Menu Close

find-general-solution-y-64x-y-2-




Question Number 132398 by bramlexs22 last updated on 14/Feb/21
find general solution  y′ = (64x+y)^2
$$\mathrm{find}\:\mathrm{general}\:\mathrm{solution}\:\:\mathrm{y}'\:=\:\left(\mathrm{64x}+\mathrm{y}\right)^{\mathrm{2}} \: \\ $$
Answered by EDWIN88 last updated on 14/Feb/21
let v = 64x+y ⇔(dv/dx) = 64+(dy/dx)  or (dy/dx) = (dv/dx)−64    ⇔ (dv/dx)  − 64 = v^2  ; (dv/dx) = v^2 +64    ∫ (dv/(v^2 +8^2 )) = ∫ dx    arctan ((v/( 8)))= 8x+C   ((64x+y)/8) = tan (8x+C) ; y = 8tan (8x+C)−64x
$$\mathrm{let}\:\mathrm{v}\:=\:\mathrm{64x}+\mathrm{y}\:\Leftrightarrow\frac{\mathrm{dv}}{\mathrm{dx}}\:=\:\mathrm{64}+\frac{\mathrm{dy}}{\mathrm{dx}} \\ $$$$\mathrm{or}\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\frac{\mathrm{dv}}{\mathrm{dx}}−\mathrm{64}\: \\ $$$$\:\Leftrightarrow\:\frac{\mathrm{dv}}{\mathrm{dx}}\:\:−\:\mathrm{64}\:=\:\mathrm{v}^{\mathrm{2}} \:;\:\frac{\mathrm{dv}}{\mathrm{dx}}\:=\:\mathrm{v}^{\mathrm{2}} +\mathrm{64}\: \\ $$$$\:\int\:\frac{\mathrm{dv}}{\mathrm{v}^{\mathrm{2}} +\mathrm{8}^{\mathrm{2}} }\:=\:\int\:\mathrm{dx}\: \\ $$$$\:\mathrm{arctan}\:\left(\frac{\mathrm{v}}{\:\mathrm{8}}\right)=\:\mathrm{8x}+\mathrm{C} \\ $$$$\:\frac{\mathrm{64x}+\mathrm{y}}{\mathrm{8}}\:=\:\mathrm{tan}\:\left(\mathrm{8x}+\mathrm{C}\right)\:;\:\mathrm{y}\:=\:\mathrm{8tan}\:\left(\mathrm{8x}+\mathrm{C}\right)−\mathrm{64x} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *