Menu Close

Question-148364




Question Number 148364 by mathdanisur last updated on 27/Jul/21
Commented by dumitrel last updated on 27/Jul/21
⇔(ae^(x/2) +be^(y/2) )^2 ≥e^((ax+by)/(a+b)) ⇔  ae^(x/2) +be^(y/2) ≥e^((ax+by)/(2(a+b)))   f(x)=e^(x/2)  convexa;(a/(a+b))+(b/(a+b))=1⇒  (a/(a+b))e^(x/2) +(b/(a+b))e^(y/2) ≥c^((a/(a+b))∙(x/2)+(b/(a+b))∙(y/2)) =e^((ax+by)/(2(a+b)))
$$\Leftrightarrow\left({ae}^{\frac{{x}}{\mathrm{2}}} +{be}^{\frac{{y}}{\mathrm{2}}} \right)^{\mathrm{2}} \geqslant{e}^{\frac{{ax}+{by}}{{a}+{b}}} \Leftrightarrow \\ $$$${ae}^{\frac{{x}}{\mathrm{2}}} +{be}^{\frac{{y}}{\mathrm{2}}} \geqslant{e}^{\frac{{ax}+{by}}{\mathrm{2}\left({a}+{b}\right)}} \\ $$$${f}\left({x}\right)={e}^{\frac{{x}}{\mathrm{2}}} \:{convexa};\frac{{a}}{{a}+{b}}+\frac{{b}}{{a}+{b}}=\mathrm{1}\Rightarrow \\ $$$$\frac{{a}}{{a}+{b}}{e}^{\frac{{x}}{\mathrm{2}}} +\frac{{b}}{{a}+{b}}{e}^{\frac{{y}}{\mathrm{2}}} \geqslant{c}^{\frac{{a}}{{a}+{b}}\centerdot\frac{{x}}{\mathrm{2}}+\frac{{b}}{{a}+{b}}\centerdot\frac{{y}}{\mathrm{2}}} ={e}^{\frac{{ax}+{by}}{\mathrm{2}\left({a}+{b}\right)}} \\ $$
Commented by mathdanisur last updated on 27/Jul/21
Thank you Ser
$${Thank}\:{you}\:{Ser} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *