Menu Close

Question-148534




Question Number 148534 by ajfour last updated on 28/Jul/21
Commented by ajfour last updated on 28/Jul/21
Find φ_(avg)   in terms of θ.
$${Find}\:\phi_{{avg}} \:\:{in}\:{terms}\:{of}\:\theta. \\ $$
Commented by MJS_new last updated on 29/Jul/21
I think it′s not possible, because it′s similar  to Bertrand′s Paradox (search the www)
$$\mathrm{I}\:\mathrm{think}\:\mathrm{it}'\mathrm{s}\:\mathrm{not}\:\mathrm{possible},\:\mathrm{because}\:\mathrm{it}'\mathrm{s}\:\mathrm{similar} \\ $$$$\mathrm{to}\:{Bertrand}'{s}\:{Paradox}\:\left(\mathrm{search}\:\mathrm{the}\:\mathrm{www}\right) \\ $$
Commented by ajfour last updated on 29/Jul/21
howsoever ingenious or tedious, but there exists an answer; why the paradox(?)?
$${howsoever}\:{ingenious}\:{or}\:{tedious},\:{but}\:{there}\:{exists}\:{an}\:{answer};\:{why}\:{the}\:{paradox}\left(?\right)? \\ $$
Commented by MJS_new last updated on 29/Jul/21
https://en.m.wikipedia.org/wiki/Bertrand_paradox_(probability)
Commented by MJS_new last updated on 29/Jul/21
read this
$$\mathrm{read}\:\mathrm{this} \\ $$
Commented by mr W last updated on 31/Jul/21
is it not the same as the question to  find the average distance between  two randomly selected points on a  part of the surface of a sphere with  unit radius?
$${is}\:{it}\:{not}\:{the}\:{same}\:{as}\:{the}\:{question}\:{to} \\ $$$${find}\:{the}\:{average}\:{distance}\:{between} \\ $$$${two}\:{randomly}\:{selected}\:{points}\:{on}\:{a} \\ $$$${part}\:{of}\:{the}\:{surface}\:{of}\:{a}\:{sphere}\:{with} \\ $$$${unit}\:{radius}? \\ $$
Commented by mr W last updated on 31/Jul/21
Commented by ajfour last updated on 03/Aug/21
sir, go ahead, solve this, i will  try too.
$${sir},\:{go}\:{ahead},\:{solve}\:{this},\:{i}\:{will} \\ $$$${try}\:{too}. \\ $$
Answered by ajfour last updated on 06/Aug/21
Commented by ajfour last updated on 06/Aug/21
cos β=((2−(√((b−acos ψ)^2 +a^2 sin^2 φ)))/2)
$$\mathrm{cos}\:\beta=\frac{\mathrm{2}−\sqrt{\left({b}−{a}\mathrm{cos}\:\psi\right)^{\mathrm{2}} +{a}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \phi}}{\mathrm{2}} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *