Menu Close

The-triangle-ABC-has-CA-CB-P-is-a-point-on-the-circumcircle-between-A-and-B-and-on-the-opposite-side-of-the-line-AB-to-C-D-is-the-foot-of-the-perpendicular-from-C-to-PB-Show-that-PA-PB-2-PD




Question Number 17614 by Tinkutara last updated on 08/Jul/17
The triangle ABC has CA = CB. P is a  point on the circumcircle between A  and B (and on the opposite side of the  line AB to C). D is the foot of the  perpendicular from C to PB. Show that  PA + PB = 2∙PD.
$$\mathrm{The}\:\mathrm{triangle}\:\mathrm{ABC}\:\mathrm{has}\:\mathrm{CA}\:=\:\mathrm{CB}.\:\mathrm{P}\:\mathrm{is}\:\mathrm{a} \\ $$$$\mathrm{point}\:\mathrm{on}\:\mathrm{the}\:\mathrm{circumcircle}\:\mathrm{between}\:\mathrm{A} \\ $$$$\mathrm{and}\:\mathrm{B}\:\left(\mathrm{and}\:\mathrm{on}\:\mathrm{the}\:\mathrm{opposite}\:\mathrm{side}\:\mathrm{of}\:\mathrm{the}\right. \\ $$$$\left.\mathrm{line}\:\mathrm{AB}\:\mathrm{to}\:\mathrm{C}\right).\:\mathrm{D}\:\mathrm{is}\:\mathrm{the}\:\mathrm{foot}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{perpendicular}\:\mathrm{from}\:\mathrm{C}\:\mathrm{to}\:\mathrm{PB}.\:\mathrm{Show}\:\mathrm{that} \\ $$$$\mathrm{PA}\:+\:\mathrm{PB}\:=\:\mathrm{2}\centerdot\mathrm{PD}. \\ $$
Commented by b.e.h.i.8.3.417@gmail.com last updated on 08/Jul/17
Commented by b.e.h.i.8.3.417@gmail.com last updated on 08/Jul/17
CA×PB+CB×PA=CP×AB(petolemy′s teorem)  ⇒CA(PA+PB)=CP×AB  ⇒PA+PB=((CP×AB)/(CA))  ((AB)/(AC))=((sinC)/(sinB))=((sin(180−2B))/(sinB))=((sin2B)/(sinB))=2cosB  cos∡CPB=((PD)/(CP))⇒CP=((PD)/(cos∡CPB))=((PD)/(cosA))=  =((PD)/(cosB))  ⇒PA+PB=((CP.AB)/(CA))=2cosB.((PD)/(cosB))=2.PD .■  note:∡CPB=∡CAB,∡APC=∡ABC
$${CA}×{PB}+{CB}×{PA}={CP}×{AB}\left({petolemy}'{s}\:{teorem}\right) \\ $$$$\Rightarrow{CA}\left({PA}+{PB}\right)={CP}×{AB} \\ $$$$\Rightarrow{PA}+{PB}=\frac{{CP}×{AB}}{{CA}} \\ $$$$\frac{{AB}}{{AC}}=\frac{{sinC}}{{sinB}}=\frac{{sin}\left(\mathrm{180}−\mathrm{2}{B}\right)}{{sinB}}=\frac{{sin}\mathrm{2}{B}}{{sinB}}=\mathrm{2}{cosB} \\ $$$${cos}\measuredangle{CPB}=\frac{{PD}}{{CP}}\Rightarrow{CP}=\frac{{PD}}{{cos}\measuredangle{CPB}}=\frac{{PD}}{{cosA}}= \\ $$$$=\frac{{PD}}{{cosB}} \\ $$$$\Rightarrow{PA}+{PB}=\frac{{CP}.{AB}}{{CA}}=\mathrm{2}{cosB}.\frac{{PD}}{{cosB}}=\mathrm{2}.{PD}\:.\blacksquare \\ $$$${note}:\measuredangle{CPB}=\measuredangle{CAB},\measuredangle{APC}=\measuredangle{ABC} \\ $$
Commented by Tinkutara last updated on 09/Jul/17
Thanks Sir!
$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *