Menu Close

if-x-1-x-4-and-x-1-x-3-then-prove-that-4-5-




Question Number 148711 by Rankut last updated on 30/Jul/21
if x+(1/x)=4, and x−(1/x)=3  then prove that 4=5
$${if}\:{x}+\frac{\mathrm{1}}{{x}}=\mathrm{4},\:{and}\:{x}−\frac{\mathrm{1}}{{x}}=\mathrm{3} \\ $$$${then}\:{prove}\:{that}\:\mathrm{4}=\mathrm{5} \\ $$
Answered by liberty last updated on 30/Jul/21
x^2 +(1/x^2 )+2=16⇒x^2 +(1/x^2 )=14  x^2 +(1/x^2 )−2=9⇒x^2 +(1/x^2 )=11  then 14=11
$$\mathrm{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }+\mathrm{2}=\mathrm{16}\Rightarrow\mathrm{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }=\mathrm{14} \\ $$$$\mathrm{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }−\mathrm{2}=\mathrm{9}\Rightarrow\mathrm{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }=\mathrm{11} \\ $$$$\mathrm{then}\:\mathrm{14}=\mathrm{11} \\ $$
Answered by liberty last updated on 30/Jul/21
 x+(1/x)=4  x−(1/x)=3  ⇒x=(7/2) ∧(1/x)=(1/2)  ⇒(7/2)=2 or 7=4
$$\:\mathrm{x}+\frac{\mathrm{1}}{\mathrm{x}}=\mathrm{4} \\ $$$$\mathrm{x}−\frac{\mathrm{1}}{\mathrm{x}}=\mathrm{3} \\ $$$$\Rightarrow\mathrm{x}=\frac{\mathrm{7}}{\mathrm{2}}\:\wedge\frac{\mathrm{1}}{\mathrm{x}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\frac{\mathrm{7}}{\mathrm{2}}=\mathrm{2}\:\mathrm{or}\:\mathrm{7}=\mathrm{4}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *