Menu Close

If-a-0-n-1-2a-1-x-2-n-2-4n-5-x-16-0-is-a-perfect-square-such-that-n-Z-what-is-the-value-of-x-n-




Question Number 83188 by john santu last updated on 28/Feb/20
If Σ_(a = 0) ^(n−1)  (2a+1)x^2 +(n^2 +4n−5)x+16  = 0 is a perfect square such that   n ∈ Z^+  . what is the value of   x +n ?
$$\mathrm{If}\:\underset{\mathrm{a}\:=\:\mathrm{0}} {\overset{\mathrm{n}−\mathrm{1}} {\sum}}\:\left(\mathrm{2a}+\mathrm{1}\right)\mathrm{x}^{\mathrm{2}} +\left(\mathrm{n}^{\mathrm{2}} +\mathrm{4n}−\mathrm{5}\right)\mathrm{x}+\mathrm{16} \\ $$$$=\:\mathrm{0}\:\mathrm{is}\:\mathrm{a}\:\mathrm{perfect}\:\mathrm{square}\:\mathrm{such}\:\mathrm{that}\: \\ $$$$\mathrm{n}\:\in\:\mathbb{Z}^{+} \:.\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\mathrm{x}\:+\mathrm{n}\:?\: \\ $$
Answered by mind is power last updated on 01/Mar/20
⇔n^2 x^2 +(n^2 +4n−5)x+16=0  ⇒(n^2 +4n−5)^2 −64n^2 =0  ⇔(n^2 −4n−5)(n^2 +12n−5)=0  ⇒n=5  x=−(((n^2 +4n−5))/(2n^2 ))=−(((40))/(2.25))=−(4/5)  x+n=−(4/5)+5=((21)/5)
$$\Leftrightarrow{n}^{\mathrm{2}} {x}^{\mathrm{2}} +\left({n}^{\mathrm{2}} +\mathrm{4}{n}−\mathrm{5}\right){x}+\mathrm{16}=\mathrm{0} \\ $$$$\Rightarrow\left({n}^{\mathrm{2}} +\mathrm{4}{n}−\mathrm{5}\right)^{\mathrm{2}} −\mathrm{64}{n}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Leftrightarrow\left({n}^{\mathrm{2}} −\mathrm{4}{n}−\mathrm{5}\right)\left({n}^{\mathrm{2}} +\mathrm{12}{n}−\mathrm{5}\right)=\mathrm{0} \\ $$$$\Rightarrow{n}=\mathrm{5} \\ $$$${x}=−\frac{\left({n}^{\mathrm{2}} +\mathrm{4}{n}−\mathrm{5}\right)}{\mathrm{2}{n}^{\mathrm{2}} }=−\frac{\left(\mathrm{40}\right)}{\mathrm{2}.\mathrm{25}}=−\frac{\mathrm{4}}{\mathrm{5}} \\ $$$${x}+{n}=−\frac{\mathrm{4}}{\mathrm{5}}+\mathrm{5}=\frac{\mathrm{21}}{\mathrm{5}} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *