Question Number 67026 by TawaTawa last updated on 21/Aug/19
Commented by Tony Lin last updated on 22/Aug/19
$$\because{slope}\:{of}\:{L}_{{BC}} ={tan}\mathrm{150}°=−\frac{\sqrt{\mathrm{3}}}{\mathrm{3}} \\ $$$$\therefore{L}_{{BC}} :\:{y}=−\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\left({x}+\mathrm{4}\right) \\ $$$$\because{L}_{{BC}} \bot{L}_{{AB}} \\ $$$$\therefore{L}_{{AB}} :{y}=\sqrt{\mathrm{3}}{x} \\ $$$${L}_{{AC}} :{x}=\mathrm{2} \\ $$$${let}\:{y}\:{coordinate}\:{of}\:{B}\:−{y} \\ $$$$\sqrt{\mathrm{3}}{y}+\frac{{y}}{\:\sqrt{\mathrm{3}}}=\mathrm{4} \\ $$$${y}=−\sqrt{\mathrm{3}}\Rightarrow{x}=−\frac{{y}}{\:\sqrt{\mathrm{3}}}=−\mathrm{1} \\ $$$$\Rightarrow{B}\left(−\mathrm{1},\:−\sqrt{\mathrm{3}}\right) \\ $$$${A}\:{is}\:{the}\:{intersection}\:{of}\:{L}_{{AB}} \&{L}_{{AC}} \\ $$$$\Rightarrow{A}\left(\mathrm{2},\:\mathrm{2}\sqrt{\mathrm{3}}\right) \\ $$$${C}\:{is}\:{the}\:{intersection}\:{of}\:{L}_{{BC}} \&{L}_{{AC}} \\ $$$$\Rightarrow{C}\left(\mathrm{2},\:−\mathrm{2}\sqrt{\mathrm{3}}\right) \\ $$$${the}\:{area}\:{of}\:\bigtriangleup{ABC} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\mid\begin{vmatrix}{−\mathrm{1}}&{\mathrm{2}}&{\mathrm{2}}&{−\mathrm{1}}\\{−\sqrt{\mathrm{3}}}&{\mathrm{2}\sqrt{\mathrm{3}}}&{−\mathrm{2}\sqrt{\mathrm{3}}}&{−\sqrt{\mathrm{3}}}\end{vmatrix}\mid \\ $$$$=\mathrm{6}\sqrt{\mathrm{3}} \\ $$
Commented by TawaTawa last updated on 22/Aug/19
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}. \\ $$
Commented by TawaTawa last updated on 22/Aug/19
$$\mathrm{please}\:\mathrm{sir}.\:\mathrm{how}\:\mathrm{is}\:\:\:\:\mathrm{L}_{\mathrm{AB}} \::\:\:\:\mathrm{y}\:=\:\sqrt{\mathrm{3}}\:\mathrm{x} \\ $$$$\mathrm{And}\:\mathrm{from}\:\mathrm{let}\:\mathrm{y}\:\mathrm{coordinate}\:\mathrm{of}\:\mathrm{B}\:=\:−\:\mathrm{y} \\ $$$$\mathrm{how}\:\mathrm{is},\:\:\:\:\sqrt{\mathrm{3}}\mathrm{y}\:+\:\frac{\mathrm{y}}{\:\sqrt{\mathrm{3}}}\:=\:\mathrm{4} \\ $$$$\mathrm{And}\:\mathrm{some}\:\mathrm{intersection}\:\mathrm{you}\:\mathrm{got}\:\mathrm{sir}.\: \\ $$$$\:\:\:\:\mathrm{When}\:\mathrm{you}\:\mathrm{are}\:\mathrm{chanced}\:\mathrm{sir},\:\mathrm{please}\:\mathrm{help}\:\mathrm{me}\:\mathrm{explain}\:\mathrm{little}\:\mathrm{steps} \\ $$
Commented by Tony Lin last updated on 22/Aug/19
Commented by TawaTawa last updated on 22/Aug/19
$$\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{sir} \\ $$