Question Number 67033 by TawaTawa last updated on 22/Aug/19
Commented by Tony Lin last updated on 22/Aug/19
$${let}\angle{DBM}=\angle{MBC}=\phi \\ $$$$\:\:\:\:\:\angle{ECM}=\angle{MCB}=\theta \\ $$$$\mathrm{2}\theta+\mathrm{2}\phi=\mathrm{90}° \\ $$$$\Rightarrow\theta=\mathrm{45}°−\phi \\ $$$$\Rightarrow\angle{BMC}=\mathrm{180}°−\mathrm{45}°=\mathrm{135}° \\ $$$$\frac{\mathrm{6}}{{sin}\phi}=\frac{\mathrm{2}\sqrt{\mathrm{2}}}{{sin}\left(\mathrm{45}°−\phi\right)}=\frac{{x}}{{sin}\mathrm{135}°} \\ $$$$\sqrt{\mathrm{2}}{sin}\phi=\mathrm{3}\left({sin}\mathrm{45}°{cos}\phi−{cos}\mathrm{45}°{sin}\phi\right) \\ $$$${sin}\phi=\frac{\mathrm{3}}{\mathrm{2}}\left({cos}\phi−{sin}\phi\right) \\ $$$$\mathrm{5}{sin}\phi=\mathrm{3}{cos}\phi \\ $$$${let}\:{sin}\phi={t},\:{t}>\mathrm{0} \\ $$$$\mathrm{5}{t}=\mathrm{3}\sqrt{\mathrm{1}−{t}^{\mathrm{2}} } \\ $$$$\mathrm{25}{t}^{\mathrm{2}} =\mathrm{9}\left(\mathrm{1}−{t}^{\mathrm{2}} \right) \\ $$$$\mathrm{34}{t}^{\mathrm{2}} =\mathrm{9} \\ $$$${t}=\frac{\mathrm{3}}{\:\sqrt{\mathrm{34}}}={sin}\phi \\ $$$$\frac{\mathrm{6}}{\frac{\mathrm{3}}{\:\sqrt{\mathrm{34}}}}=\frac{{x}}{\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}} \\ $$$${x}={BC}=\mathrm{2}\sqrt{\mathrm{17}} \\ $$
Commented by TawaTawa last updated on 22/Aug/19
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\: \\ $$
Commented by TawaTawa last updated on 23/Aug/19