Menu Close

Solve-the-equation-x-a-a-x-where-a-gt-0-is-a-parameter-




Question Number 149670 by EDWIN88 last updated on 06/Aug/21
   Solve the equation     x=(√(a−(√(a+x)) )) where a>0 is    a parameter.
$$\:\:\:{Solve}\:{the}\:{equation}\: \\ $$$$\:\:{x}=\sqrt{{a}−\sqrt{{a}+{x}}\:}\:{where}\:{a}>\mathrm{0}\:{is}\: \\ $$$$\:{a}\:{parameter}. \\ $$
Answered by MJS_new last updated on 06/Aug/21
for a, x ∈R  it′s easy to see that  0≤x≤a(a−1)  ⇒ a≥1    x=(√(a−(√(a+x))))  squaring and transforming 2 times  (beware of false solutions!)  leads to  a^2 −(2x^2 +1)a+x(x^3 −1)=0  ⇒  a_1 =x^2 −x∨a_2 =x^2 +x+1  testing a_1 :  x=(√(x^2 −x−(√(x^2 −x+x))))  x=(√(x^2 −2x)) ⇒ x=0 ⇒ a=0  testing a_2 :  x=(√(x^2 +x+1−(√(x^2 +x+1+x))))  x=(√(x^2 +x+1−∣x+1∣))  x≥0 ⇒ x=(√x^2 ) always true  ⇒  a=x^2 +x+1 ⇔ x=−(1/2)±((√(4a−3))/2)  x≥0 ⇒  ★ x=−(1/2)+((√(4a−3))/2) ★
$$\mathrm{for}\:{a},\:{x}\:\in\mathbb{R} \\ $$$$\mathrm{it}'\mathrm{s}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{see}\:\mathrm{that} \\ $$$$\mathrm{0}\leqslant{x}\leqslant{a}\left({a}−\mathrm{1}\right) \\ $$$$\Rightarrow\:{a}\geqslant\mathrm{1} \\ $$$$ \\ $$$${x}=\sqrt{{a}−\sqrt{{a}+{x}}} \\ $$$$\mathrm{squaring}\:\mathrm{and}\:\mathrm{transforming}\:\mathrm{2}\:\mathrm{times} \\ $$$$\left(\mathrm{beware}\:\mathrm{of}\:\mathrm{false}\:\mathrm{solutions}!\right) \\ $$$$\mathrm{leads}\:\mathrm{to} \\ $$$${a}^{\mathrm{2}} −\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}\right){a}+{x}\left({x}^{\mathrm{3}} −\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow \\ $$$${a}_{\mathrm{1}} ={x}^{\mathrm{2}} −{x}\vee{a}_{\mathrm{2}} ={x}^{\mathrm{2}} +{x}+\mathrm{1} \\ $$$$\mathrm{testing}\:{a}_{\mathrm{1}} : \\ $$$${x}=\sqrt{{x}^{\mathrm{2}} −{x}−\sqrt{{x}^{\mathrm{2}} −{x}+{x}}} \\ $$$${x}=\sqrt{{x}^{\mathrm{2}} −\mathrm{2}{x}}\:\Rightarrow\:{x}=\mathrm{0}\:\Rightarrow\:{a}=\mathrm{0} \\ $$$$\mathrm{testing}\:{a}_{\mathrm{2}} : \\ $$$${x}=\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}−\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}+{x}}} \\ $$$${x}=\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}−\mid{x}+\mathrm{1}\mid} \\ $$$${x}\geqslant\mathrm{0}\:\Rightarrow\:{x}=\sqrt{{x}^{\mathrm{2}} }\:\mathrm{always}\:\mathrm{true} \\ $$$$\Rightarrow \\ $$$${a}={x}^{\mathrm{2}} +{x}+\mathrm{1}\:\Leftrightarrow\:{x}=−\frac{\mathrm{1}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{4}{a}−\mathrm{3}}}{\mathrm{2}} \\ $$$${x}\geqslant\mathrm{0}\:\Rightarrow \\ $$$$\bigstar\:{x}=−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{4}{a}−\mathrm{3}}}{\mathrm{2}}\:\bigstar \\ $$
Commented by mr W last updated on 07/Aug/21
great!
$${great}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *