Menu Close

3-7u-7u-2-7-du-




Question Number 84327 by sahnaz last updated on 11/Mar/20
∫((3−7u)/(7u^2 −7))du
$$\int\frac{\mathrm{3}−\mathrm{7u}}{\mathrm{7u}^{\mathrm{2}} −\mathrm{7}}\mathrm{du} \\ $$
Answered by 20092104 last updated on 15/Mar/20
∫((3−7u)/(7u^2 −7))du  =∫((3−7u)/(7(u^2 −1)))du  =∫((3/(7(u^2 −1)))−(u/(u^2 −1)))du  =(3/7)∫(1/((u−1)(u+1)))du−∫(u/(u^2 −1))du  =(3/7)∫((1/(2(u−1)))+(1/(2(u+1))))du−∫(u/(u^2 −1))du  =(3/(14))(ln∣u−1∣+ln∣u+1∣)−∫(u/(u^2 −1))du  let v=u^2 −1, dv=2udu, du=(dv/(2u))  (3/(14))ln∣u−1∣+(3/(14))ln∣u+1∣−(1/2)∫(1/v)dv  =(3/(14))ln∣u−1∣+(3/(14))ln∣u+1∣−(1/2)ln∣u^2 −1∣+C
$$\int\frac{\mathrm{3}−\mathrm{7}{u}}{\mathrm{7}{u}^{\mathrm{2}} −\mathrm{7}}{du} \\ $$$$=\int\frac{\mathrm{3}−\mathrm{7}{u}}{\mathrm{7}\left({u}^{\mathrm{2}} −\mathrm{1}\right)}{du} \\ $$$$=\int\left(\frac{\mathrm{3}}{\mathrm{7}\left({u}^{\mathrm{2}} −\mathrm{1}\right)}−\frac{{u}}{{u}^{\mathrm{2}} −\mathrm{1}}\right){du} \\ $$$$=\frac{\mathrm{3}}{\mathrm{7}}\int\frac{\mathrm{1}}{\left({u}−\mathrm{1}\right)\left({u}+\mathrm{1}\right)}{du}−\int\frac{{u}}{{u}^{\mathrm{2}} −\mathrm{1}}{du} \\ $$$$=\frac{\mathrm{3}}{\mathrm{7}}\int\left(\frac{\mathrm{1}}{\mathrm{2}\left({u}−\mathrm{1}\right)}+\frac{\mathrm{1}}{\mathrm{2}\left({u}+\mathrm{1}\right)}\right){du}−\int\frac{{u}}{{u}^{\mathrm{2}} −\mathrm{1}}{du} \\ $$$$=\frac{\mathrm{3}}{\mathrm{14}}\left({ln}\mid{u}−\mathrm{1}\mid+{ln}\mid{u}+\mathrm{1}\mid\right)−\int\frac{{u}}{{u}^{\mathrm{2}} −\mathrm{1}}{du} \\ $$$${let}\:{v}={u}^{\mathrm{2}} −\mathrm{1},\:{dv}=\mathrm{2}{udu},\:{du}=\frac{{dv}}{\mathrm{2}{u}} \\ $$$$\frac{\mathrm{3}}{\mathrm{14}}{ln}\mid{u}−\mathrm{1}\mid+\frac{\mathrm{3}}{\mathrm{14}}{ln}\mid{u}+\mathrm{1}\mid−\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\mathrm{1}}{{v}}{dv} \\ $$$$=\frac{\mathrm{3}}{\mathrm{14}}{ln}\mid{u}−\mathrm{1}\mid+\frac{\mathrm{3}}{\mathrm{14}}{ln}\mid{u}+\mathrm{1}\mid−\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid{u}^{\mathrm{2}} −\mathrm{1}\mid+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *