Menu Close

Compute-0-1-x-1-logx-dx-




Question Number 1613 by 112358 last updated on 26/Aug/15
Compute                         ∫_0 ^1 ((x−1)/(logx))dx .
$$\mathrm{Compute}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}−\mathrm{1}}{{logx}}{dx}\:. \\ $$
Commented by 123456 last updated on 27/Aug/15
I=ln 10 ln 2  j(x)=ln 10[Ei(2ln x)−li(x)]+C
$$\mathrm{I}=\mathrm{ln}\:\mathrm{10}\:\mathrm{ln}\:\mathrm{2} \\ $$$${j}\left({x}\right)=\mathrm{ln}\:\mathrm{10}\left[\mathrm{Ei}\left(\mathrm{2ln}\:{x}\right)−\mathrm{li}\left({x}\right)\right]+\mathrm{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *