Menu Close

If-the-equation-sin6x-cos4x-2-have-a-family-of-nonnegative-solutions-x-k-s-where-0-x-1-lt-x-2-lt-x-3-lt-lt-x-k-lt-x-k-1-then-the-value-of-1-pi-k-1-1000-x-




Question Number 18892 by Tinkutara last updated on 01/Aug/17
If the equation sin6x + cos4x = −2 have  a family of nonnegative solutions x_k ′s,  where 0 ≤ x_1  < x_2  < x_3  < .... < x_k  < x_(k+1)   ....., then the value of (1/π)Σ_(k=1) ^(1000) ∣x_(k+1)  − x_k ∣ is
$$\mathrm{If}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{sin6}{x}\:+\:\mathrm{cos4}{x}\:=\:−\mathrm{2}\:\mathrm{have} \\ $$$$\mathrm{a}\:\mathrm{family}\:\mathrm{of}\:\mathrm{nonnegative}\:\mathrm{solutions}\:{x}_{{k}} '\mathrm{s}, \\ $$$$\mathrm{where}\:\mathrm{0}\:\leqslant\:{x}_{\mathrm{1}} \:<\:{x}_{\mathrm{2}} \:<\:{x}_{\mathrm{3}} \:<\:….\:<\:{x}_{{k}} \:<\:{x}_{{k}+\mathrm{1}} \\ $$$$…..,\:\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\frac{\mathrm{1}}{\pi}\underset{{k}=\mathrm{1}} {\overset{\mathrm{1000}} {\sum}}\mid{x}_{{k}+\mathrm{1}} \:−\:{x}_{{k}} \mid\:\mathrm{is} \\ $$
Answered by ajfour last updated on 01/Aug/17
sin 6x+cos 4x=−2  ⇒ sin 6x=−1  and  cos 4x=−1  ⇒ 6x=2nπ+((3π)/2)     ; n≥0   (here)   or  x=((nπ)/3)+(π/4)   ...(i)  And   4x=2mπ+π    ; m≥0         or  x=((mπ)/2)+(π/4)    ...(ii)  since both (i) and (ii) together  must be true,     x−(π/4)= ((nπ)/3)=((mπ)/2)  or   x−(π/4)=kπ    x_(k+1) −x_k =π  ⇒  (1/π)Σ_(k=1) ^(1000) ∣x_(k+1) −x_k ∣=((1000π)/π)=1000 .
$$\mathrm{sin}\:\mathrm{6x}+\mathrm{cos}\:\mathrm{4x}=−\mathrm{2} \\ $$$$\Rightarrow\:\mathrm{sin}\:\mathrm{6x}=−\mathrm{1}\:\:\mathrm{and}\:\:\mathrm{cos}\:\mathrm{4x}=−\mathrm{1} \\ $$$$\Rightarrow\:\mathrm{6x}=\mathrm{2n}\pi+\frac{\mathrm{3}\pi}{\mathrm{2}}\:\:\:\:\:;\:\mathrm{n}\geqslant\mathrm{0}\:\:\:\left(\mathrm{here}\right) \\ $$$$\:\mathrm{or}\:\:\mathrm{x}=\frac{\mathrm{n}\pi}{\mathrm{3}}+\frac{\pi}{\mathrm{4}}\:\:\:…\left(\mathrm{i}\right) \\ $$$$\mathrm{And}\:\:\:\mathrm{4x}=\mathrm{2m}\pi+\pi\:\:\:\:;\:\mathrm{m}\geqslant\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\mathrm{or}\:\:\mathrm{x}=\frac{\mathrm{m}\pi}{\mathrm{2}}+\frac{\pi}{\mathrm{4}}\:\:\:\:…\left(\mathrm{ii}\right) \\ $$$$\mathrm{since}\:\mathrm{both}\:\left(\mathrm{i}\right)\:\mathrm{and}\:\left(\mathrm{ii}\right)\:\mathrm{together} \\ $$$$\mathrm{must}\:\mathrm{be}\:\mathrm{true}, \\ $$$$\:\:\:\mathrm{x}−\frac{\pi}{\mathrm{4}}=\:\frac{\mathrm{n}\pi}{\mathrm{3}}=\frac{\mathrm{m}\pi}{\mathrm{2}} \\ $$$$\mathrm{or}\:\:\:\mathrm{x}−\frac{\pi}{\mathrm{4}}=\mathrm{k}\pi\:\: \\ $$$$\mathrm{x}_{\mathrm{k}+\mathrm{1}} −\mathrm{x}_{\mathrm{k}} =\pi \\ $$$$\Rightarrow\:\:\frac{\mathrm{1}}{\pi}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{1000}} {\sum}}\mid\mathrm{x}_{\mathrm{k}+\mathrm{1}} −\mathrm{x}_{\mathrm{k}} \mid=\frac{\mathrm{1000}\pi}{\pi}=\mathrm{1000}\:. \\ $$
Commented by ajfour last updated on 01/Aug/17
is it correct?
$$\mathrm{is}\:\mathrm{it}\:\mathrm{correct}? \\ $$
Commented by Tinkutara last updated on 01/Aug/17
Thank you very much ajfour Sir!
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{ajfour}\:\mathrm{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *