Menu Close

Question-19033




Question Number 19033 by Bruce Lee last updated on 03/Aug/17
Commented by Bruce Lee last updated on 03/Aug/17
Help me, by no Lhopital
$$\boldsymbol{{Help}}\:\boldsymbol{{me}},\:\boldsymbol{{by}}\:\boldsymbol{{no}}\:\boldsymbol{{Lhopital}} \\ $$
Answered by ajfour last updated on 03/Aug/17
lim_(x→0) ((2x−sin 2x)/(x−sin x))  =lim_(x→0) ((2x−(2x−(((2x)^3 )/(3!))+(((2x)^5 )/(5!))−...))/(x−(x−(x^3 /(3!))+(x^5 /(5!))−...)))  =lim_(x→0) (((((2x)^3 )/(3!))[1−(((3!)(2x)^2 )/(5!))+...])/((x^3 /(3!))[1−(((3!)x^2 )/(5!))+...]))  =lim_(x→0) (([(((2x)^3 )/(3!))])/([(x^3 /(3!))]))×lim_(x→0) (([1−(x^2 /5)+..terms with higher powers of  x])/([1−(x^2 /(20))+...terms with higher powers of  x]))  =8×1 = 8 .
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{2x}−\mathrm{sin}\:\mathrm{2x}}{\mathrm{x}−\mathrm{sin}\:\mathrm{x}} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{2x}−\left(\mathrm{2x}−\frac{\left(\mathrm{2x}\right)^{\mathrm{3}} }{\mathrm{3}!}+\frac{\left(\mathrm{2x}\right)^{\mathrm{5}} }{\mathrm{5}!}−…\right)}{\mathrm{x}−\left(\mathrm{x}−\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}!}+\frac{\mathrm{x}^{\mathrm{5}} }{\mathrm{5}!}−…\right)} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\frac{\left(\mathrm{2x}\right)^{\mathrm{3}} }{\mathrm{3}!}\left[\mathrm{1}−\frac{\left(\mathrm{3}!\right)\left(\mathrm{2x}\right)^{\mathrm{2}} }{\mathrm{5}!}+…\right]}{\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}!}\left[\mathrm{1}−\frac{\left(\mathrm{3}!\right)\mathrm{x}^{\mathrm{2}} }{\mathrm{5}!}+…\right]} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left[\frac{\left(\mathrm{2x}\right)^{\mathrm{3}} }{\mathrm{3}!}\right]}{\left[\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}!}\right]}×\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left[\mathrm{1}−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{5}}+..\mathrm{terms}\:\mathrm{with}\:\mathrm{higher}\:\mathrm{powers}\:\mathrm{of}\:\:\mathrm{x}\right]}{\left[\mathrm{1}−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{20}}+…\mathrm{terms}\:\mathrm{with}\:\mathrm{higher}\:\mathrm{powers}\:\mathrm{of}\:\:\mathrm{x}\right]} \\ $$$$=\mathrm{8}×\mathrm{1}\:=\:\mathrm{8}\:. \\ $$
Answered by behi.8.3.4.1.7@gmail.com last updated on 04/Aug/17
l=lim_(x→0) ((2x−sin2x)/(x−sinx))=lim_(x→0) ((((2x)^3 )/6)/(x^3 /6))=8 .  Note:    θ−sinθ ⋍ (θ^3 /6)   (when:  θ→0)
$${l}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{2}{x}−{sin}\mathrm{2}{x}}{{x}−{sinx}}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\frac{\left(\mathrm{2}{x}\right)^{\mathrm{3}} }{\mathrm{6}}}{\frac{{x}^{\mathrm{3}} }{\mathrm{6}}}=\mathrm{8}\:. \\ $$$${Note}:\:\:\:\:\theta−{sin}\theta\:\backsimeq\:\frac{\theta^{\mathrm{3}} }{\mathrm{6}}\:\:\:\left({when}:\:\:\theta\rightarrow\mathrm{0}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *