Menu Close

Question-150410




Question Number 150410 by ajfour last updated on 12/Aug/21
Commented by ajfour last updated on 12/Aug/21
If length of cylinder and  both width and length of  wedge are equal, and that  their material densities  are even equal, and their  acceleration magnitudes  (from ground reference)  are equal then find x/r.  (assume pure rolling).
$${If}\:{length}\:{of}\:{cylinder}\:{and} \\ $$$${both}\:{width}\:{and}\:{length}\:{of} \\ $$$${wedge}\:{are}\:{equal},\:{and}\:{that} \\ $$$${their}\:{material}\:{densities} \\ $$$${are}\:{even}\:{equal},\:{and}\:{their} \\ $$$${acceleration}\:{magnitudes} \\ $$$$\left({from}\:{ground}\:{reference}\right) \\ $$$${are}\:{equal}\:{then}\:{find}\:{x}/{r}. \\ $$$$\left({assume}\:{pure}\:{rolling}\right). \\ $$
Answered by ajfour last updated on 12/Aug/21
M(wedge)=ρrx^2   m(cylinder)=πρr^2 x  Nsin α−fcos α=MA=m(acos α−A)  mgrsin α+mArcos α          =(((3mr^2 )/2))((a/r))  gsin α+Acos α=((3a)/2)  A(1+(M/m))=λA=acos α  (asin α)^2 +(acos α−A)^2 =A^2   ⇒  λ^2 tan^2 α+(λ−1)^2 =1  λ=1+(M/m)=1+(x/(πr))=1+((2cos α)/(πsin α))  ⇒ λ=1+((2cot α)/π)  ⇒ (tan α+(2/π))^2 +(4/π^2 )cot^2 α=1  m=tan α  m^2 (m+(2/π))^2 −m^2 +(4/π^2 )=0  ⇒  (m+(2/π))^2 +(4/(π^2 m^2 ))=1  m=−(2/π)     (?)
$${M}\left({wedge}\right)=\rho{rx}^{\mathrm{2}} \\ $$$${m}\left({cylinder}\right)=\pi\rho{r}^{\mathrm{2}} {x} \\ $$$${N}\mathrm{sin}\:\alpha−{f}\mathrm{cos}\:\alpha={MA}={m}\left({a}\mathrm{cos}\:\alpha−{A}\right) \\ $$$$\cancel{{m}gr}\mathrm{sin}\:\alpha+\cancel{{m}Ar}\mathrm{cos}\:\alpha \\ $$$$\:\:\:\:\:\:\:\:=\left(\frac{\mathrm{3}\cancel{{m}r}^{\mathrm{2}} }{\mathrm{2}}\right)\left(\frac{{a}}{{r}}\right) \\ $$$${g}\mathrm{sin}\:\alpha+{A}\mathrm{cos}\:\alpha=\frac{\mathrm{3}{a}}{\mathrm{2}} \\ $$$${A}\left(\mathrm{1}+\frac{{M}}{{m}}\right)=\lambda{A}={a}\mathrm{cos}\:\alpha \\ $$$$\left({a}\mathrm{sin}\:\alpha\right)^{\mathrm{2}} +\left({a}\mathrm{cos}\:\alpha−{A}\right)^{\mathrm{2}} ={A}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\lambda^{\mathrm{2}} \mathrm{tan}\:^{\mathrm{2}} \alpha+\left(\lambda−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$$\lambda=\mathrm{1}+\frac{{M}}{{m}}=\mathrm{1}+\frac{{x}}{\pi{r}}=\mathrm{1}+\frac{\mathrm{2cos}\:\alpha}{\pi\mathrm{sin}\:\alpha} \\ $$$$\Rightarrow\:\lambda=\mathrm{1}+\frac{\mathrm{2cot}\:\alpha}{\pi} \\ $$$$\Rightarrow\:\left(\mathrm{tan}\:\alpha+\frac{\mathrm{2}}{\pi}\right)^{\mathrm{2}} +\frac{\mathrm{4}}{\pi^{\mathrm{2}} }\mathrm{cot}\:^{\mathrm{2}} \alpha=\mathrm{1} \\ $$$${m}=\mathrm{tan}\:\alpha \\ $$$${m}^{\mathrm{2}} \left({m}+\frac{\mathrm{2}}{\pi}\right)^{\mathrm{2}} −{m}^{\mathrm{2}} +\frac{\mathrm{4}}{\pi^{\mathrm{2}} }=\mathrm{0} \\ $$$$\Rightarrow\:\:\left({m}+\frac{\mathrm{2}}{\pi}\right)^{\mathrm{2}} +\frac{\mathrm{4}}{\pi^{\mathrm{2}} {m}^{\mathrm{2}} }=\mathrm{1} \\ $$$${m}=−\frac{\mathrm{2}}{\pi}\:\:\:\:\:\left(?\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *