Menu Close

Prove-that-z-1-z-2-z-1-z-2-arg-z-1-arg-z-2-pi-2-




Question Number 19350 by Tinkutara last updated on 10/Aug/17
Prove that ∣z_1  + z_2 ∣ = ∣z_1  − z_2 ∣ ⇔  arg(z_1 ) − arg(z_2 ) = (π/2)
$$\mathrm{Prove}\:\mathrm{that}\:\mid{z}_{\mathrm{1}} \:+\:{z}_{\mathrm{2}} \mid\:=\:\mid{z}_{\mathrm{1}} \:−\:{z}_{\mathrm{2}} \mid\:\Leftrightarrow \\ $$$$\mathrm{arg}\left({z}_{\mathrm{1}} \right)\:−\:\mathrm{arg}\left({z}_{\mathrm{2}} \right)\:=\:\frac{\pi}{\mathrm{2}} \\ $$
Answered by ajfour last updated on 10/Aug/17
⇒ ∣z_1 +z_2 ∣^2 =∣z_1 −z_2 ∣^2   z_1 ^2 +z_2 ^2 +2Re(z_1 z_2 ^� )=z_1 ^2 +z_2 ^2 −2Re(z_1 z_2 ^� )  ⇒ Re(z_1 z_2 ^� )=0    Re[(x_1 +iy_1 )(x_2 −iy_2 )]=0  ⇒    x_1 x_2 =−y_1 y_2   ⇒  (y_2 /x_2 ) =−(x_1 /y_1 )  ⇒tan [arg(z_2 )]=−(1/(tan [arg(z_1 )]))  ⇒ tan θ_1 tan θ_2 +1=0  and as tan (θ_1 −θ_2 )=((tan θ_1 −tan θ_2 )/(1+tan θ_1 tan θ_2 ))  ⇒   θ_1 −θ_2 =(π/2)        arg(z_1 )−arg(z_2 )= (π/2) .
$$\Rightarrow\:\mid\mathrm{z}_{\mathrm{1}} +\mathrm{z}_{\mathrm{2}} \mid^{\mathrm{2}} =\mid\mathrm{z}_{\mathrm{1}} −\mathrm{z}_{\mathrm{2}} \mid^{\mathrm{2}} \\ $$$$\mathrm{z}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{z}_{\mathrm{2}} ^{\mathrm{2}} +\mathrm{2Re}\left(\mathrm{z}_{\mathrm{1}} \bar {\mathrm{z}}_{\mathrm{2}} \right)=\mathrm{z}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{z}_{\mathrm{2}} ^{\mathrm{2}} −\mathrm{2Re}\left(\mathrm{z}_{\mathrm{1}} \bar {\mathrm{z}}_{\mathrm{2}} \right) \\ $$$$\Rightarrow\:\mathrm{Re}\left(\mathrm{z}_{\mathrm{1}} \bar {\mathrm{z}}_{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\:\:\mathrm{Re}\left[\left(\mathrm{x}_{\mathrm{1}} +\mathrm{iy}_{\mathrm{1}} \right)\left(\mathrm{x}_{\mathrm{2}} −\mathrm{iy}_{\mathrm{2}} \right)\right]=\mathrm{0} \\ $$$$\Rightarrow\:\:\:\:\mathrm{x}_{\mathrm{1}} \mathrm{x}_{\mathrm{2}} =−\mathrm{y}_{\mathrm{1}} \mathrm{y}_{\mathrm{2}} \\ $$$$\Rightarrow\:\:\frac{\mathrm{y}_{\mathrm{2}} }{\mathrm{x}_{\mathrm{2}} }\:=−\frac{\mathrm{x}_{\mathrm{1}} }{\mathrm{y}_{\mathrm{1}} } \\ $$$$\Rightarrow\mathrm{tan}\:\left[\mathrm{arg}\left(\mathrm{z}_{\mathrm{2}} \right)\right]=−\frac{\mathrm{1}}{\mathrm{tan}\:\left[\mathrm{arg}\left(\mathrm{z}_{\mathrm{1}} \right)\right]} \\ $$$$\Rightarrow\:\mathrm{tan}\:\theta_{\mathrm{1}} \mathrm{tan}\:\theta_{\mathrm{2}} +\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{and}\:\mathrm{as}\:\mathrm{tan}\:\left(\theta_{\mathrm{1}} −\theta_{\mathrm{2}} \right)=\frac{\mathrm{tan}\:\theta_{\mathrm{1}} −\mathrm{tan}\:\theta_{\mathrm{2}} }{\mathrm{1}+\mathrm{tan}\:\theta_{\mathrm{1}} \mathrm{tan}\:\theta_{\mathrm{2}} } \\ $$$$\Rightarrow\:\:\:\theta_{\mathrm{1}} −\theta_{\mathrm{2}} =\frac{\pi}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\mathrm{arg}\left(\mathrm{z}_{\mathrm{1}} \right)−\mathrm{arg}\left(\mathrm{z}_{\mathrm{2}} \right)=\:\frac{\pi}{\mathrm{2}}\:.\:\:\: \\ $$
Commented by Tinkutara last updated on 10/Aug/17
Thank you very much Sir!
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *