Menu Close

lim-x-0-0-pi-cosx-2-dx-x-Help-




Question Number 150585 by bekzodjumayev last updated on 13/Aug/21
lim_(x→0) ((∫_0 ^π cosx^2 dx)/x)=??  Help
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\underset{\mathrm{0}} {\overset{\pi} {\int}}{cosx}^{\mathrm{2}} {dx}}{{x}}=?? \\ $$$${Help} \\ $$
Commented by mr W last updated on 13/Aug/21
lim_(x→0) ((∫_0 ^π cosx^2 dx)/x)  =lim_(x→0) ((constant)/x)  =∞
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\underset{\mathrm{0}} {\overset{\pi} {\int}}{cosx}^{\mathrm{2}} {dx}}{{x}} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{constant}}{{x}} \\ $$$$=\infty \\ $$
Commented by bekzodjumayev last updated on 13/Aug/21
Commented by bekzodjumayev last updated on 13/Aug/21
There is no such answer
$${There}\:{is}\:{no}\:{such}\:{answer} \\ $$
Commented by mr W last updated on 13/Aug/21
if the question is lim_(x→0) ((∫_0 ^π cosx^2 dx)/x)=?  then all answers given are wrong.
$${if}\:{the}\:{question}\:{is}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\underset{\mathrm{0}} {\overset{\pi} {\int}}{cosx}^{\mathrm{2}} {dx}}{{x}}=? \\ $$$${then}\:{all}\:{answers}\:{given}\:{are}\:{wrong}. \\ $$
Commented by ajfour last updated on 13/Aug/21
the constant might just be   zero, i could not check; but i  think it requires  cos [(π−t)^2 ]=−cos t^2
$${the}\:{constant}\:{might}\:{just}\:{be}\: \\ $$$${zero},\:{i}\:{could}\:{not}\:{check};\:{but}\:{i} \\ $$$${think}\:{it}\:{requires} \\ $$$$\mathrm{cos}\:\left[\left(\pi−{t}\right)^{\mathrm{2}} \right]=−\mathrm{cos}\:{t}^{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *