0-1-sin-ln-x-ln-x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 85256 by john santu last updated on 20/Mar/20 ∫10sin(lnx)ln(x)dx Commented by john santu last updated on 20/Mar/20 sin(z)=eiz−e−iz2isin(lnx)=eiln(x)−e−iln(x)2i=xi−x−i2i∫10xi−x−i2iln(x)dx=I(1)letI(b)=∫10xbi−x−i2iln(x)dxI′(b)=∫10∂∂b[xbi−x−i2iln(x)]dxI′(b)=∫10xbiln(x)i2iln(x)dxI′(b)=12(1+bi)xbi+1]x=0x=1I′(b)=12(1+bi)⇒I(b)=∫12(1+bi)dbI(b)=12iln(1+bi)+C Commented by john santu last updated on 20/Mar/20 12iln(1+bi)+C=∫10xbi−x−i2iln(x)dxb=−1⇒12iln(1−i)+C=0C=−12iln(1−i)I(1)=12iln(1+i1−i)=12iπi2=π4∴∫10sin(lnx)ln(x)dx=π4 Commented by mathmax by abdo last updated on 20/Mar/20 I=∫01sin(lnx)lnxdxchangementlnx=−tgivex=e−t⇒I=−∫0+∞sin(t)t(−e−t)dt=∫0∞sintte−tdtletf(a)=∫0∞sintte−atdtwitha⩾0wehavef′(a)=−∫0∞sinte−atdt=−Im(∫0∞e−at+itdt)∫0∞e(−a+i)tdt=[1−a+ie(−a+i)t]0+∞=−1a−i{−1}=1a−i=a+ia2+1⇒f′(a)=−11+a2⇒f(a)=k−arctan(a)f(0)=π2=k⇒f(a)=π2−arctan(a)I=f(1)=π2−π4=π4 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-150794Next Next post: Find-the-value-of-1-3-3-4-help-please- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.