Menu Close

Find-the-point-on-the-paraboloid-z-x-2-y-2-which-is-closest-to-the-point-3-6-4-




Question Number 132853 by EDWIN88 last updated on 17/Feb/21
Find the point on the paraboloid   z = x^2 +y^2  which is closest to the point   (3,−6,4 )
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{point}\:\mathrm{on}\:\mathrm{the}\:\mathrm{paraboloid}\: \\ $$$$\mathrm{z}\:=\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \:\mathrm{which}\:\mathrm{is}\:\mathrm{closest}\:\mathrm{to}\:\mathrm{the}\:\mathrm{point}\: \\ $$$$\left(\mathrm{3},−\mathrm{6},\mathrm{4}\:\right) \\ $$
Answered by MJS_new last updated on 17/Feb/21
y=−2x [horizontal sections are circles]   ((x),(y),((x^2 +y^2 )) ) = ((x),((−2x)),((5x^2 )) )  ∣ ((x),((−2x)),((5x^2 )) ) − ((3),((−6)),(4) ) ∣=(√(25x^4 −35x^2 −30x+62))  (d/dx)[(√(25x^4 −35x^2 −30x+62))]=0  ((5(10x^3 −7x−3))/( (√(25x^4 −35x^2 −30x+62))))=0  ((5(x−1)(10x^2 +10x+3))/( (√(25x^4 −35x^2 −30x+62))))=0  x=1  ⇒ y=−2∧z=5  minimum distance is (√(21))
$${y}=−\mathrm{2}{x}\:\left[\mathrm{horizontal}\:\mathrm{sections}\:\mathrm{are}\:\mathrm{circles}\right] \\ $$$$\begin{pmatrix}{{x}}\\{{y}}\\{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\end{pmatrix}\:=\begin{pmatrix}{{x}}\\{−\mathrm{2}{x}}\\{\mathrm{5}{x}^{\mathrm{2}} }\end{pmatrix} \\ $$$$\mid\begin{pmatrix}{{x}}\\{−\mathrm{2}{x}}\\{\mathrm{5}{x}^{\mathrm{2}} }\end{pmatrix}\:−\begin{pmatrix}{\mathrm{3}}\\{−\mathrm{6}}\\{\mathrm{4}}\end{pmatrix}\:\mid=\sqrt{\mathrm{25}{x}^{\mathrm{4}} −\mathrm{35}{x}^{\mathrm{2}} −\mathrm{30}{x}+\mathrm{62}} \\ $$$$\frac{{d}}{{dx}}\left[\sqrt{\mathrm{25}{x}^{\mathrm{4}} −\mathrm{35}{x}^{\mathrm{2}} −\mathrm{30}{x}+\mathrm{62}}\right]=\mathrm{0} \\ $$$$\frac{\mathrm{5}\left(\mathrm{10}{x}^{\mathrm{3}} −\mathrm{7}{x}−\mathrm{3}\right)}{\:\sqrt{\mathrm{25}{x}^{\mathrm{4}} −\mathrm{35}{x}^{\mathrm{2}} −\mathrm{30}{x}+\mathrm{62}}}=\mathrm{0} \\ $$$$\frac{\mathrm{5}\left({x}−\mathrm{1}\right)\left(\mathrm{10}{x}^{\mathrm{2}} +\mathrm{10}{x}+\mathrm{3}\right)}{\:\sqrt{\mathrm{25}{x}^{\mathrm{4}} −\mathrm{35}{x}^{\mathrm{2}} −\mathrm{30}{x}+\mathrm{62}}}=\mathrm{0} \\ $$$${x}=\mathrm{1} \\ $$$$\Rightarrow\:{y}=−\mathrm{2}\wedge{z}=\mathrm{5} \\ $$$$\mathrm{minimum}\:\mathrm{distance}\:\mathrm{is}\:\sqrt{\mathrm{21}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *