Menu Close

Given-vector-a-i-j-k-c-j-k-a-b-c-and-a-b-3-then-b-




Question Number 132856 by bramlexs22 last updated on 17/Feb/21
Given vector a^→  = i^� +j^� +k^�  , c^→ =j^� −k^�  ;   a^→  × b^→  = c^→  and a^→ .b^→  = 3 then ∣b^→ ∣ = ?
Givenvectora=i^+j^+k^,c=j^k^;a×b=canda.b=3thenb=?
Answered by EDWIN88 last updated on 17/Feb/21
from a^→  × b^→  = c^→  we get a^→ ×(a^→ ×b^→ ) = a^→ ×c^→    a^→ ×c^→ = determinant (((1   1      1)),((0   1  −1)))= −2i^� +j^� +k^�   and a^→ ×(a^→ ×b^→ )=(a^→ .b^→ )a^→ −(a^→ .a^→ )b^→ =−2i^� +j^� +k^�   ⇒3a^→ −3b^→ = −2i^� +j^� +k^�     b^→ =(((3,3,3)−(−2,1,1))/3) = ((5i^� +2j^� +2k^� )/3)  Therefore ∣b^→ ∣ = ((√(25+4+4))/3) = ((√(33))/3) = (√((11)/3))
froma×b=cwegeta×(a×b)=a×ca×c=|111011|=2i^+j^+k^anda×(a×b)=(a.b)a(a.a)b=2i^+j^+k^3a3b=2i^+j^+k^b=(3,3,3)(2,1,1)3=5i^+2j^+2k^3Thereforeb=25+4+43=333=113

Leave a Reply

Your email address will not be published. Required fields are marked *