Menu Close

3sinx-5cosx-5-then-prove-that-5sinx-3cox-3-




Question Number 67345 by Aditya789 last updated on 26/Aug/19
3sinx+5cosx=5 then prove that   5sinx−3cox= +3
$$\mathrm{3}{sinx}+\mathrm{5}{cosx}=\mathrm{5}\:{then}\:{prove}\:{that}\: \\ $$$$\mathrm{5}{sinx}−\mathrm{3}{cox}=\:+\mathrm{3} \\ $$
Answered by $@ty@m123 last updated on 26/Aug/19
(3/5)sin x+cos x=1  ((1−cos x)/(sin x))=(3/5)  ((1−cos x)/(sin x))×((1+cos x)/(1+cos x))=(3/5)  ((1−cos^2 x)/(sin x(1+cos x)))=(3/5)  ((sin^2 x)/(sin x(1+cos x)))=(3/5)  ((sin x)/(1+cos x))=(3/5)  5sin x=3+3cos x  5sinx−3cosx= 3
$$\frac{\mathrm{3}}{\mathrm{5}}\mathrm{sin}\:{x}+\mathrm{cos}\:{x}=\mathrm{1} \\ $$$$\frac{\mathrm{1}−\mathrm{cos}\:{x}}{\mathrm{sin}\:{x}}=\frac{\mathrm{3}}{\mathrm{5}} \\ $$$$\frac{\mathrm{1}−\mathrm{cos}\:{x}}{\mathrm{sin}\:{x}}×\frac{\mathrm{1}+\mathrm{cos}\:{x}}{\mathrm{1}+\mathrm{cos}\:{x}}=\frac{\mathrm{3}}{\mathrm{5}} \\ $$$$\frac{\mathrm{1}−\mathrm{cos}\:^{\mathrm{2}} {x}}{\mathrm{sin}\:{x}\left(\mathrm{1}+\mathrm{cos}\:{x}\right)}=\frac{\mathrm{3}}{\mathrm{5}} \\ $$$$\frac{\mathrm{s}{in}\:^{\mathrm{2}} {x}}{\mathrm{sin}\:{x}\left(\mathrm{1}+\mathrm{cos}\:{x}\right)}=\frac{\mathrm{3}}{\mathrm{5}} \\ $$$$\frac{\mathrm{sin}\:{x}}{\mathrm{1}+\mathrm{cos}\:{x}}=\frac{\mathrm{3}}{\mathrm{5}} \\ $$$$\mathrm{5sin}\:{x}=\mathrm{3}+\mathrm{3cos}\:{x} \\ $$$$\mathrm{5}{sinx}−\mathrm{3}{cosx}=\:\mathrm{3} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *