Menu Close

lim-x-0-2sin-x-sin-2x-x-sin-x-




Question Number 132920 by liberty last updated on 17/Feb/21
 lim_(x→0)  ((2sin x−sin 2x)/(x−sin x))
$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2sin}\:\mathrm{x}−\mathrm{sin}\:\mathrm{2x}}{\mathrm{x}−\mathrm{sin}\:\mathrm{x}} \\ $$
Answered by bobhans last updated on 17/Feb/21
 L′Ho^  pital  lim_(x→0)  ((2cos x−2cos 2x)/(1−cos x)) =  lim_(x→0)  ((2cos x−2(2cos^2  x−1) )/(1−cos x))  lim_(x→0)  ((2cos x+2−4cos^2 x)/(1−cos x))   lim_(x→0)  ((−2(2cos x+1)(cos x−1))/(1−cos x))  lim_(x→0)  2(2cos x+1)= 2×3 = 6
$$\:{L}'{H}\ddot {{o}pital} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2cos}\:{x}−\mathrm{2cos}\:\mathrm{2}{x}}{\mathrm{1}−\mathrm{cos}\:{x}}\:= \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2cos}\:{x}−\mathrm{2}\left(\mathrm{2cos}^{\mathrm{2}} \:{x}−\mathrm{1}\right)\:}{\mathrm{1}−\mathrm{cos}\:{x}} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2cos}\:{x}+\mathrm{2}−\mathrm{4cos}\:^{\mathrm{2}} {x}}{\mathrm{1}−\mathrm{cos}\:{x}}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{−\mathrm{2}\left(\mathrm{2cos}\:{x}+\mathrm{1}\right)\left(\mathrm{cos}\:{x}−\mathrm{1}\right)}{\mathrm{1}−\mathrm{cos}\:{x}} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\mathrm{2}\left(\mathrm{2cos}\:{x}+\mathrm{1}\right)=\:\mathrm{2}×\mathrm{3}\:=\:\mathrm{6} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *