Question Number 153172 by SANOGO last updated on 05/Sep/21
$$\underset{{x}\rightarrow+{oo}} {\mathrm{li}\underset{} {{m}}}\underset{{k}={o}} {\overset{{n}^{\mathrm{2}} } {\sum}}\frac{{n}}{\:{n}^{\mathrm{2}} +{k}^{\mathrm{2}} } \\ $$
Answered by Ar Brandon last updated on 05/Sep/21
$$\mathscr{L}=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\underset{{k}=\mathrm{0}} {\overset{{n}^{\mathrm{2}} } {\sum}}\frac{{n}}{{n}^{\mathrm{2}} +{k}^{\mathrm{2}} }=\underset{{n}=\infty} {\mathrm{lim}}\frac{\mathrm{1}}{{n}}\underset{{k}=\mathrm{0}} {\overset{{n}^{\mathrm{2}} } {\sum}}\frac{\mathrm{1}}{\mathrm{1}+\frac{{k}^{\mathrm{2}} }{{n}^{\mathrm{2}} }} \\ $$$$\:\:\:\:\:=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\int_{\mathrm{0}} ^{{n}} \frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} }=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left[\mathrm{arctan}\left({x}\right)\right]_{\mathrm{0}} ^{{n}} =\pm\frac{\pi}{\mathrm{2}} \\ $$
Commented by SANOGO last updated on 05/Sep/21
$${stp}\:{explique}\:{moi}\:{sur}\:{les}\:{bornes}\:{la}\:{de}\:{o}\:{a}\:\:{n} \\ $$
Commented by Ar Brandon last updated on 06/Sep/21
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\underset{{k}=\mathrm{1}} {\overset{{tn}} {\sum}}{f}\left({x}_{{k}} \right)=\int_{\mathrm{0}} ^{{t}} {f}\left({x}\right){dx} \\ $$