Menu Close

The-sum-of-all-the-solutions-of-the-equation-1-2-cosec-x-sec-2-x-2-2-in-the-interval-0-4pi-is-npi-where-n-is-equal-to-




Question Number 22348 by Tinkutara last updated on 16/Oct/17
The sum of all the solutions of the  equation 1 + 2 cosec x = āˆ’((sec^2  (x/2))/2) in  the interval [0, 4Ļ€] is nĻ€, where n is  equal to
$$\mathrm{The}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{all}\:\mathrm{the}\:\mathrm{solutions}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{equation}\:\mathrm{1}\:+\:\mathrm{2}\:\mathrm{cosec}\:{x}\:=\:āˆ’\frac{\mathrm{sec}^{\mathrm{2}} \:\frac{{x}}{\mathrm{2}}}{\mathrm{2}}\:\mathrm{in} \\ $$$$\mathrm{the}\:\mathrm{interval}\:\left[\mathrm{0},\:\mathrm{4}\pi\right]\:\mathrm{is}\:{n}\pi,\:\mathrm{where}\:{n}\:\mathrm{is} \\ $$$$\mathrm{equal}\:\mathrm{to} \\ $$
Answered by ajfour last updated on 16/Oct/17
      n=5 ,  as there are two  possible solutions in the given  interval.    x=((3š›‘)/2) , ((7š›‘)/2) .  Let tan (x/2) =t    2cosec x= (2/(sin x))=((1+t^2 )/t)       sec^2 (x/2) =1+t^2   ;  Then    1+((1+t^2 )/t)=āˆ’(((1+t^2 ))/2)      2t+2+2t^2 +t(1+t^2 ) =0  or   t^3 +2t^2 +3t+2=0  ā‡’   (t+1)(t^2 +t+2)=0  only one real root t=āˆ’1     ā‡’  tan ((x/2))=āˆ’1     As      0 ā‰¤ (x/2)ā‰¤ 2Ļ€        ā‡’ (x/2) = ((3Ļ€)/4) , ((7Ļ€)/4)  ā‡’     x=((3š›‘)/2) , ((7š›‘)/2)   Their sum = 5š›‘ =nš›‘      So    n=5 .
$$\:\:\:\:\:\:\boldsymbol{{n}}=\mathrm{5}\:,\:\:{as}\:{there}\:{are}\:{two} \\ $$$${possible}\:{solutions}\:{in}\:{the}\:{given} \\ $$$${interval}.\:\:\:\:\boldsymbol{{x}}=\frac{\mathrm{3}\boldsymbol{\pi}}{\mathrm{2}}\:,\:\frac{\mathrm{7}\boldsymbol{\pi}}{\mathrm{2}}\:. \\ $$$${Let}\:\mathrm{tan}\:\frac{{x}}{\mathrm{2}}\:={t} \\ $$$$\:\:\mathrm{2cosec}\:{x}=\:\frac{\mathrm{2}}{\mathrm{sin}\:{x}}=\frac{\mathrm{1}+{t}^{\mathrm{2}} }{{t}} \\ $$$$\:\:\:\:\:\mathrm{sec}\:^{\mathrm{2}} \frac{{x}}{\mathrm{2}}\:=\mathrm{1}+{t}^{\mathrm{2}} \:\:;\:\:{Then} \\ $$$$\:\:\mathrm{1}+\frac{\mathrm{1}+\boldsymbol{{t}}^{\mathrm{2}} }{\boldsymbol{{t}}}=āˆ’\frac{\left(\mathrm{1}+\boldsymbol{{t}}^{\mathrm{2}} \right)}{\mathrm{2}} \\ $$$$\:\:\:\:\mathrm{2}{t}+\mathrm{2}+\mathrm{2}{t}^{\mathrm{2}} +{t}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\:=\mathrm{0} \\ $$$${or}\:\:\:\boldsymbol{{t}}^{\mathrm{3}} +\mathrm{2}\boldsymbol{{t}}^{\mathrm{2}} +\mathrm{3}\boldsymbol{{t}}+\mathrm{2}=\mathrm{0} \\ $$$$\Rightarrow\:\:\:\left({t}+\mathrm{1}\right)\left({t}^{\mathrm{2}} +{t}+\mathrm{2}\right)=\mathrm{0} \\ $$$${only}\:{one}\:{real}\:{root}\:\boldsymbol{{t}}=āˆ’\mathrm{1} \\ $$$$\:\:\:\Rightarrow\:\:\mathrm{tan}\:\left(\frac{{x}}{\mathrm{2}}\right)=āˆ’\mathrm{1} \\ $$$$\:\:\:{As}\:\:\:\:\:\:\mathrm{0}\:\leqslant\:\frac{{x}}{\mathrm{2}}\leqslant\:\mathrm{2}\pi \\ $$$$\:\:\:\:\:\:\Rightarrow\:\frac{{x}}{\mathrm{2}}\:=\:\frac{\mathrm{3}\pi}{\mathrm{4}}\:,\:\frac{\mathrm{7}\pi}{\mathrm{4}} \\ $$$$\Rightarrow\:\:\:\:\:\boldsymbol{{x}}=\frac{\mathrm{3}\boldsymbol{\pi}}{\mathrm{2}}\:,\:\frac{\mathrm{7}\boldsymbol{\pi}}{\mathrm{2}}\: \\ $$$${Their}\:{sum}\:=\:\mathrm{5}\boldsymbol{\pi}\:=\boldsymbol{{n}\pi} \\ $$$$\:\:\:\:{So}\:\:\:\:\boldsymbol{{n}}=\mathrm{5}\:. \\ $$
Commented by Tinkutara last updated on 16/Oct/17
Thank you very much Sir!
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *