Menu Close

If-I-n-0-pi-e-x-sin-n-xdx-show-that-n-2-1-I-n-n-n-1-I-n-2-




Question Number 89240 by Ar Brandon last updated on 16/Apr/20
If I_n =∫_0 ^π e^x sin^n xdx, show that   (n^2 +1)I_n =n(n−1)I_(n−2)
$${If}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\pi} {e}^{{x}} {sin}^{{n}} {xdx},\:{show}\:{that}\: \\ $$$$\left({n}^{\mathrm{2}} +\mathrm{1}\right){I}_{{n}} ={n}\left({n}−\mathrm{1}\right){I}_{{n}−\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *