Menu Close

0-e-x-1-1-e-x-1-x-dx-




Question Number 90113 by M±th+et£s last updated on 21/Apr/20
∫_0 ^∞ e^(−x) ((1/(1−e^(−x) ))−(1/x))dx
$$\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} \left(\frac{\mathrm{1}}{\mathrm{1}−{e}^{−{x}} }−\frac{\mathrm{1}}{{x}}\right){dx} \\ $$
Answered by maths mind last updated on 21/Apr/20
Ψ(z)=∫_0 ^(+∞) ((e^(−t) /t)−(e^(−zt) /(1−e^(−t) )))dt  ∫_0 ^(+∞) e^(−x) ((1/(1−e^(−x) ))−(1/x))dx=∫_0 ^∞ ((e^(−x) /(1−e^(−x) ))−(e^(−x) /x))dx  =−∫_0 ^∞ ((e^(−x) /x)−(e^(−1x) /(1−e^(−x) )))dx=−Ψ(1)=γ
$$\Psi\left({z}\right)=\int_{\mathrm{0}} ^{+\infty} \left(\frac{{e}^{−{t}} }{{t}}−\frac{{e}^{−{zt}} }{\mathrm{1}−{e}^{−{t}} }\right){dt} \\ $$$$\int_{\mathrm{0}} ^{+\infty} {e}^{−{x}} \left(\frac{\mathrm{1}}{\mathrm{1}−{e}^{−{x}} }−\frac{\mathrm{1}}{{x}}\right){dx}=\int_{\mathrm{0}} ^{\infty} \left(\frac{{e}^{−{x}} }{\mathrm{1}−{e}^{−{x}} }−\frac{{e}^{−{x}} }{{x}}\right){dx} \\ $$$$=−\int_{\mathrm{0}} ^{\infty} \left(\frac{{e}^{−{x}} }{{x}}−\frac{{e}^{−\mathrm{1}{x}} }{\mathrm{1}−{e}^{−{x}} }\right){dx}=−\Psi\left(\mathrm{1}\right)=\gamma \\ $$
Commented by M±th+et£s last updated on 21/Apr/20
wow nice digamma!
$${wow}\:{nice}\:{digamma}! \\ $$
Commented by maths mind last updated on 21/Apr/20
thanx sir
$${thanx}\:{sir} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *