Menu Close

Evaluate-0-dx-x-4-2x-2-cos-1-0-lt-lt-pi-




Question Number 2210 by Yozzi last updated on 08/Nov/15
Evaluate     ∫_0 ^∞ (dx/(x^4 +2x^2 cosα+1))  (0<α<π).
$${Evaluate}\: \\ $$$$\:\:\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{{x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{2}} {cos}\alpha+\mathrm{1}}\:\:\left(\mathrm{0}<\alpha<\pi\right). \\ $$
Commented by 123456 last updated on 09/Nov/15
−(1/2)ıcosec α(((tan^(−1) (x/( (√e^(−ıα) ))))/( (√e^(−ıα) )))−((tan^(−1) (x/( (√e^(ıα) ))))/( (√e^(ıα) ))))  c.m
$$−\frac{\mathrm{1}}{\mathrm{2}}\imath\mathrm{cosec}\:\alpha\left(\frac{\mathrm{tan}^{−\mathrm{1}} \frac{{x}}{\:\sqrt{{e}^{−\imath\alpha} }}}{\:\sqrt{{e}^{−\imath\alpha} }}−\frac{\mathrm{tan}^{−\mathrm{1}} \frac{{x}}{\:\sqrt{{e}^{\imath\alpha} }}}{\:\sqrt{{e}^{\imath\alpha} }}\right) \\ $$$$\mathrm{c}.\mathrm{m} \\ $$
Commented by prakash jain last updated on 09/Nov/15
(1/(x^4 +2x^2 cosα+cos^2 α+1−cos^2 α))  =(1/((x^2 +cosα)^2 +sin^2 α))  =(1/((x^2 +cos α−isin α)(x^2 +cos α+isin α)))  =(1/((x^2 +e^(−iα) )(x^2 +e^(iα) )))
$$\frac{\mathrm{1}}{{x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{2}} {cos}\alpha+\mathrm{cos}^{\mathrm{2}} \alpha+\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \alpha} \\ $$$$=\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{cos}\alpha\right)^{\mathrm{2}} +\mathrm{sin}^{\mathrm{2}} \alpha} \\ $$$$=\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{cos}\:\alpha−{i}\mathrm{sin}\:\alpha\right)\left({x}^{\mathrm{2}} +\mathrm{cos}\:\alpha+{i}\mathrm{sin}\:\alpha\right)} \\ $$$$=\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +{e}^{−{i}\alpha} \right)\left({x}^{\mathrm{2}} +{e}^{{i}\alpha} \right)} \\ $$
Answered by prakash jain last updated on 09/Nov/15
(1/((x^2 +e^(iα) )(x^2 +e^(−iα) )))  =(1/((e^(iα) −e^(−iα) )))((1/(x^2 +e^(−iα) ))−(1/(x^2 +e^(iα) )))  Integrating ∫(1/(x^2 +a^2 ))=(1/a)tan^(−1) (x/a)  =(1/(2sin iα))[(1/( (√e^(−iα) )))tan^(−1) (x/( (√e^(−iα) )))−(1/( (√e^(iα) )))tan^(−1) (x/( (√e^(iα) )))]
$$\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +{e}^{{i}\alpha} \right)\left({x}^{\mathrm{2}} +{e}^{−{i}\alpha} \right)} \\ $$$$=\frac{\mathrm{1}}{\left({e}^{{i}\alpha} −{e}^{−{i}\alpha} \right)}\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} +{e}^{−{i}\alpha} }−\frac{\mathrm{1}}{{x}^{\mathrm{2}} +{e}^{{i}\alpha} }\right) \\ $$$$\mathrm{Integrating}\:\int\frac{\mathrm{1}}{{x}^{\mathrm{2}} +{a}^{\mathrm{2}} }=\frac{\mathrm{1}}{{a}}\mathrm{tan}^{−\mathrm{1}} \frac{{x}}{{a}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2sin}\:{i}\alpha}\left[\frac{\mathrm{1}}{\:\sqrt{{e}^{−{i}\alpha} }}\mathrm{tan}^{−\mathrm{1}} \frac{{x}}{\:\sqrt{{e}^{−{i}\alpha} }}−\frac{\mathrm{1}}{\:\sqrt{{e}^{{i}\alpha} }}\mathrm{tan}^{−\mathrm{1}} \frac{{x}}{\:\sqrt{{e}^{{i}\alpha} }}\right] \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *