Menu Close

Question-156253




Question Number 156253 by MathSh last updated on 09/Oct/21
Answered by ajfour last updated on 09/Oct/21
let  b=pa,  c=qa  p,q≥1  a^3 pq=1  L.H.S.−R.H.S.    =a^3 (1+p)(p+q)(q+1)         −2a(1+p+q)−2    =a^3 ((1/a^3 )+p+q+1)(p+q)        −2a(1+p+q)−2  =1+a^3 (p+q)^2 +a(a^2 −2)(p+q)        −2a−2  say  p+q=t  f(t)=a^3 t^2 +a(a^2 −2)t−2(a+1)+1  D=(((2−a^2 )/(2a^2 )))^2 +((2(a+1)−1)/a^3 )  as  D>0    a being +ve  L.H.S.−R.H.S.=f(t)>0
$$\mathrm{let}\:\:\mathrm{b}=\mathrm{pa},\:\:\mathrm{c}=\mathrm{qa} \\ $$$$\mathrm{p},\mathrm{q}\geqslant\mathrm{1} \\ $$$$\mathrm{a}^{\mathrm{3}} \mathrm{pq}=\mathrm{1} \\ $$$$\mathrm{L}.\mathrm{H}.\mathrm{S}.−\mathrm{R}.\mathrm{H}.\mathrm{S}. \\ $$$$\:\:=\mathrm{a}^{\mathrm{3}} \left(\mathrm{1}+\mathrm{p}\right)\left(\mathrm{p}+\mathrm{q}\right)\left(\mathrm{q}+\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:−\mathrm{2a}\left(\mathrm{1}+\mathrm{p}+\mathrm{q}\right)−\mathrm{2} \\ $$$$\:\:=\mathrm{a}^{\mathrm{3}} \left(\frac{\mathrm{1}}{\mathrm{a}^{\mathrm{3}} }+\mathrm{p}+\mathrm{q}+\mathrm{1}\right)\left(\mathrm{p}+\mathrm{q}\right) \\ $$$$\:\:\:\:\:\:−\mathrm{2a}\left(\mathrm{1}+\mathrm{p}+\mathrm{q}\right)−\mathrm{2} \\ $$$$=\mathrm{1}+\mathrm{a}^{\mathrm{3}} \left(\mathrm{p}+\mathrm{q}\right)^{\mathrm{2}} +\mathrm{a}\left(\mathrm{a}^{\mathrm{2}} −\mathrm{2}\right)\left(\mathrm{p}+\mathrm{q}\right) \\ $$$$\:\:\:\:\:\:−\mathrm{2a}−\mathrm{2} \\ $$$$\mathrm{say}\:\:\mathrm{p}+\mathrm{q}=\mathrm{t} \\ $$$$\mathrm{f}\left(\mathrm{t}\right)=\mathrm{a}^{\mathrm{3}} \mathrm{t}^{\mathrm{2}} +\mathrm{a}\left(\mathrm{a}^{\mathrm{2}} −\mathrm{2}\right)\mathrm{t}−\mathrm{2}\left(\mathrm{a}+\mathrm{1}\right)+\mathrm{1} \\ $$$$\mathrm{D}=\left(\frac{\mathrm{2}−\mathrm{a}^{\mathrm{2}} }{\mathrm{2a}^{\mathrm{2}} }\right)^{\mathrm{2}} +\frac{\mathrm{2}\left(\mathrm{a}+\mathrm{1}\right)−\mathrm{1}}{\mathrm{a}^{\mathrm{3}} } \\ $$$$\mathrm{as}\:\:\mathrm{D}>\mathrm{0}\:\:\:\:\mathrm{a}\:\mathrm{being}\:+\mathrm{ve} \\ $$$$\mathrm{L}.\mathrm{H}.\mathrm{S}.−\mathrm{R}.\mathrm{H}.\mathrm{S}.=\mathrm{f}\left(\mathrm{t}\right)>\mathrm{0} \\ $$
Commented by MathSh last updated on 10/Oct/21
Thank you Ser
$$\mathrm{Thank}\:\mathrm{you}\:\boldsymbol{\mathrm{S}}\mathrm{er} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *