Menu Close

find-a-equivalent-of-k-2-n-ln-k-




Question Number 91631 by mathmax by abdo last updated on 02/May/20
find a equivalent of Σ_(k=2) ^n ln(k)
$${find}\:{a}\:{equivalent}\:{of}\:\sum_{{k}=\mathrm{2}} ^{{n}} {ln}\left({k}\right) \\ $$
Commented by mathmax by abdo last updated on 02/May/20
U_n =Σ_(k=2) ^n  ln(k) ⇒U_n =ln(Π_(k=2) ^n  k) =ln(n!) we have  n! ∼n^n  e^(−n) (√(2πn)) ⇒ln(n!)∼nln(n)−n +(1/2)ln(2π)+(1/2)ln(n) ⇒  U_n ∼nln(n)(1−(1/(ln(n)))+(1/(2n))) ⇒U_n ∼ nln(n) (n→∞)
$${U}_{{n}} =\sum_{{k}=\mathrm{2}} ^{{n}} \:{ln}\left({k}\right)\:\Rightarrow{U}_{{n}} ={ln}\left(\prod_{{k}=\mathrm{2}} ^{{n}} \:{k}\right)\:={ln}\left({n}!\right)\:{we}\:{have} \\ $$$${n}!\:\sim{n}^{{n}} \:{e}^{−{n}} \sqrt{\mathrm{2}\pi{n}}\:\Rightarrow{ln}\left({n}!\right)\sim{nln}\left({n}\right)−{n}\:+\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{2}\pi\right)+\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({n}\right)\:\Rightarrow \\ $$$${U}_{{n}} \sim{nln}\left({n}\right)\left(\mathrm{1}−\frac{\mathrm{1}}{{ln}\left({n}\right)}+\frac{\mathrm{1}}{\mathrm{2}{n}}\right)\:\Rightarrow{U}_{{n}} \sim\:{nln}\left({n}\right)\:\left({n}\rightarrow\infty\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *