Menu Close

SOLVE-x-2x-3x-1-




Question Number 157231 by mnjuly1970 last updated on 21/Oct/21
        SOLVE :         ⌊ x ⌋ + ⌊2x ⌋ +⌊ 3x ⌋= 1  −−−−−−−−−−
$$ \\ $$$$\:\:\:\:\:\:\mathcal{SOLVE}\:: \\ $$$$ \\ $$$$\:\:\:\:\:\lfloor\:{x}\:\rfloor\:+\:\lfloor\mathrm{2}{x}\:\rfloor\:+\lfloor\:\mathrm{3}{x}\:\rfloor=\:\mathrm{1} \\ $$$$−−−−−−−−−− \\ $$$$ \\ $$
Answered by Javokhir last updated on 21/Oct/21
            x=a+z      ⇒[z]=0    [x]=a            ⇒a+[2a+2z]+[3a+3z]=1=6a+[2z]+[3z]          ⇒ a=0 ⇔   z∈[0;1) ⇒[2z]=0 or [2z]=1             Step1          ⇒0≤2z<1 ⇒[2z]=0 or [3z]=0 or [3z]=1  ↙           0≤z<(1/2) or  (1/3)≤z<(2/3)  ⇔  (1/3)≤z< (1/2) ■                     x∈[(1/3) ;(1/2))✓                                             Solved by  ∗Khamidofff ∗
$$\:\:\:\:\:\:\:\:\:\:\:\:{x}={a}+{z}\:\:\:\:\:\:\Rightarrow\left[{z}\right]=\mathrm{0}\:\:\:\:\left[{x}\right]={a} \\ $$$$\:\:\:\:\:\:\:\:\:\:\Rightarrow{a}+\left[\mathrm{2}{a}+\mathrm{2}{z}\right]+\left[\mathrm{3}{a}+\mathrm{3}{z}\right]=\mathrm{1}=\mathrm{6}{a}+\left[\mathrm{2}{z}\right]+\left[\mathrm{3}{z}\right] \\ $$$$\:\:\:\:\:\:\:\:\Rightarrow\:{a}=\mathrm{0}\:\Leftrightarrow\:\:\:{z}\in\left[\mathrm{0};\mathrm{1}\right)\:\Rightarrow\left[\mathrm{2}{z}\right]=\mathrm{0}\:{or}\:\left[\mathrm{2}{z}\right]=\mathrm{1}\:\:\:\:\: \\ $$$$\:\:\:\:\:\:{Step}\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\Rightarrow\mathrm{0}\leqslant\mathrm{2}{z}<\mathrm{1}\:\Rightarrow\left[\mathrm{2}{z}\right]=\mathrm{0}\:{or}\:\left[\mathrm{3}{z}\right]=\mathrm{0}\:{or}\:\left[\mathrm{3}{z}\right]=\mathrm{1}\:\:\swarrow \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{0}\leqslant{z}<\frac{\mathrm{1}}{\mathrm{2}}\:{or}\:\:\frac{\mathrm{1}}{\mathrm{3}}\leqslant{z}<\frac{\mathrm{2}}{\mathrm{3}}\:\:\Leftrightarrow\:\:\frac{\mathrm{1}}{\mathrm{3}}\leqslant{z}<\:\frac{\mathrm{1}}{\mathrm{2}}\:\blacksquare \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}\in\left[\frac{\mathrm{1}}{\mathrm{3}}\:;\frac{\mathrm{1}}{\mathrm{2}}\right)\checkmark \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Solved}\:{by}\:\:\ast{Khamidofff}\:\ast \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 21/Oct/21
great sir ...
$${great}\:{sir}\:… \\ $$
Commented by Javokhir last updated on 21/Oct/21
ok
$${ok} \\ $$
Answered by mr W last updated on 21/Oct/21
x=n+f with 0≤f<1  6n+[2f]+[3f]=1  1−6n=[2f]+[3f]<5 ⇒n>−(2/3) ⇒n≥0  1−6n=[2f]+[3f]≥0 ⇒n≤(1/6) ⇒n≤0  ⇒n=0  [2f]+[3f]=1  ⇒2f<1 ∧ 3f≥1  ⇒(1/3)≤f<(1/2)  ⇒(1/3)≤x<(1/2)
$${x}={n}+{f}\:{with}\:\mathrm{0}\leqslant{f}<\mathrm{1} \\ $$$$\mathrm{6}{n}+\left[\mathrm{2}{f}\right]+\left[\mathrm{3}{f}\right]=\mathrm{1} \\ $$$$\mathrm{1}−\mathrm{6}{n}=\left[\mathrm{2}{f}\right]+\left[\mathrm{3}{f}\right]<\mathrm{5}\:\Rightarrow{n}>−\frac{\mathrm{2}}{\mathrm{3}}\:\Rightarrow{n}\geqslant\mathrm{0} \\ $$$$\mathrm{1}−\mathrm{6}{n}=\left[\mathrm{2}{f}\right]+\left[\mathrm{3}{f}\right]\geqslant\mathrm{0}\:\Rightarrow{n}\leqslant\frac{\mathrm{1}}{\mathrm{6}}\:\Rightarrow{n}\leqslant\mathrm{0} \\ $$$$\Rightarrow{n}=\mathrm{0} \\ $$$$\left[\mathrm{2}{f}\right]+\left[\mathrm{3}{f}\right]=\mathrm{1} \\ $$$$\Rightarrow\mathrm{2}{f}<\mathrm{1}\:\wedge\:\mathrm{3}{f}\geqslant\mathrm{1} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{3}}\leqslant{f}<\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{3}}\leqslant{x}<\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Commented by mnjuly1970 last updated on 21/Oct/21
 thanks alot sir W
$$\:{thanks}\:{alot}\:{sir}\:{W} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *