Question Number 92040 by mhmd last updated on 04/May/20
$${y}^{''} +\left({y}'\right)^{\mathrm{2}} +{y}=\mathrm{0}\:\:\:{y}\left(\mathrm{0}\right)=−\frac{\mathrm{1}}{\mathrm{2}}\:,\:{y}'\left(\mathrm{0}\right)=−\mathrm{1} \\ $$$${help}\:{me}\:{sir}\: \\ $$
Answered by mr W last updated on 04/May/20
$${let}\:{u}={y}'=\frac{{dy}}{{dx}} \\ $$$${y}''=\frac{{du}}{{dx}}=\frac{{du}}{{dy}}×\frac{{dy}}{{dx}}={u}\frac{{du}}{{dy}} \\ $$$${u}\frac{{du}}{{dy}}+{u}^{\mathrm{2}} +{y}=\mathrm{0} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\frac{{d}\left({u}^{\mathrm{2}} \right)}{{dy}}+{u}^{\mathrm{2}} +{y}=\mathrm{0} \\ $$$${let}\:{U}={u}^{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\frac{{dU}}{{dy}}+{U}+{y}=\mathrm{0} \\ $$$$\frac{{dU}}{{dy}}+\mathrm{2}{U}=−\mathrm{2}{y} \\ $$$${U}=\frac{−\int\mathrm{2}{ye}^{\int\mathrm{2}{dy}} {dy}+{C}}{{e}^{\int\mathrm{2}{fy}} } \\ $$$${U}=\frac{−\int\mathrm{2}{ye}^{\mathrm{2}{y}} {dy}+{C}}{{e}^{\mathrm{2}{y}} } \\ $$$${U}=\frac{−{ye}^{\mathrm{2}{y}} +\int{e}^{\mathrm{2}{y}} {dy}+{C}}{{e}^{\mathrm{2}{y}} } \\ $$$${U}=\frac{−{ye}^{\mathrm{2}{y}} +\frac{\mathrm{1}}{\mathrm{2}}{e}^{\mathrm{2}{y}} +{C}}{{e}^{\mathrm{2}{y}} } \\ $$$${U}=\frac{\mathrm{1}−\mathrm{2}{y}+{C}_{\mathrm{1}} {e}^{−\mathrm{2}{y}} }{\mathrm{2}}={u}^{\mathrm{2}} =\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} \\ $$$$\frac{{dy}}{{dx}}=\pm\frac{\sqrt{\mathrm{1}−\mathrm{2}{y}+{C}_{\mathrm{1}} {e}^{−\mathrm{2}{y}} }}{\:\sqrt{\mathrm{2}}} \\ $$$$−\mathrm{1}=\pm\frac{\sqrt{\mathrm{2}+{C}_{\mathrm{1}} {e}}}{\:\sqrt{\mathrm{2}}} \\ $$$$\Rightarrow{C}_{\mathrm{1}} =\mathrm{0} \\ $$$$\frac{{dy}}{\:\sqrt{\mathrm{1}−\mathrm{2}{y}}}=−\frac{{dx}}{\:\sqrt{\mathrm{2}}} \\ $$$${x}=−\sqrt{\mathrm{2}}\int\frac{{dy}}{\:\sqrt{\mathrm{1}−\mathrm{2}{y}}}+{C}_{\mathrm{2}} \\ $$$${x}=\sqrt{\mathrm{2}\left(\mathrm{1}−\mathrm{2}{y}\right)}+{C}_{\mathrm{2}} \\ $$$$\mathrm{0}=\sqrt{\mathrm{2}\left(\mathrm{1}+\mathrm{1}\right)}+{C}_{\mathrm{2}} \\ $$$$\Rightarrow{C}_{\mathrm{2}} =−\mathrm{2} \\ $$$$\Rightarrow{x}=\sqrt{\mathrm{2}\left(\mathrm{1}−\mathrm{2}{y}\right)}−\mathrm{2} \\ $$$${or} \\ $$$$\Rightarrow{y}=\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{4}}\left({x}+\mathrm{2}\right)^{\mathrm{2}} \\ $$
Commented by mr W last updated on 04/May/20
$${check}: \\ $$$${y}\left(\mathrm{0}\right)=\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${y}'=−\frac{{x}+\mathrm{2}}{\mathrm{2}}=−\mathrm{1}−\frac{{x}}{\mathrm{2}} \\ $$$${y}'\left(\mathrm{0}\right)=−\mathrm{1} \\ $$$${y}''=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${y}''+\left({y}'\right)^{\mathrm{2}} +{y}=−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\left({x}+\mathrm{2}\right)^{\mathrm{2}} }{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{2}}−\frac{\left({x}+\mathrm{2}\right)^{\mathrm{2}} }{\mathrm{4}}=\mathrm{0} \\ $$
Commented by niroj last updated on 04/May/20