Menu Close

P-is-a-polynomial-havng-n-roots-x-i-1-i-n-with-x-i-x-j-for-i-j-find-the-values-of-k1-k-n-1-x-x-k-and-k-1-n-1-x-x-k-2-




Question Number 27000 by abdo imad last updated on 01/Jan/18
P is a polynomial havng n roots (x_i )_(1≤i≤n)   with x_i ≠ x_j  for i≠ j  find the values of Σ_(k1) ^(k=n) (1/(x−x_k ))  and  Σ_(k=1) ^n (1/((x−x_k )^2 )) .
$${P}\:{is}\:{a}\:{polynomial}\:{havng}\:{n}\:{roots}\:\left({x}_{{i}} \right)_{\mathrm{1}\leqslant{i}\leqslant{n}} \:\:{with}\:{x}_{{i}} \neq\:{x}_{{j}} \:{for}\:{i}\neq\:{j} \\ $$$${find}\:{the}\:{values}\:{of}\:\sum_{{k}\mathrm{1}} ^{{k}={n}} \frac{\mathrm{1}}{{x}−{x}_{{k}} }\:\:{and}\:\:\sum_{{k}=\mathrm{1}} ^{{n}} \frac{\mathrm{1}}{\left({x}−{x}_{{k}} \right)^{\mathrm{2}} }\:. \\ $$
Commented by abdo imad last updated on 01/Jan/18
P(x)=α Π_(k=1) ^(k=n)  (x−x_k  )⇒ ((P^ (x))/(P(x)))= Σ_(k=1) ^(k=n)  (1/(x−x_k )) and after  derivation  ((P^′^′   (x)P(x)−(P^  )^2 )/((P(x))^2 ))= −Σ_(k=1) ^n (1/((x−x_k )^2 ))  ⇒ Σ_(k=1) ^(k=n) (1/((x−x_k )^2 )) =  ((((dP/dx))^2 − P(x)(d^2 P/dx^2 ))/((P(x))^2 )).
$${P}\left({x}\right)=\alpha\:\prod_{{k}=\mathrm{1}} ^{{k}={n}} \:\left({x}−{x}_{{k}} \:\right)\Rightarrow\:\frac{{P}^{} \left({x}\right)}{{P}\left({x}\right)}=\:\sum_{{k}=\mathrm{1}} ^{{k}={n}} \:\frac{\mathrm{1}}{{x}−{x}_{{k}} }\:{and}\:{after} \\ $$$${derivation}\:\:\frac{{P}^{'^{'} } \:\left({x}\right){P}\left({x}\right)−\left({P}^{} \:\right)^{\mathrm{2}} }{\left({P}\left({x}\right)\right)^{\mathrm{2}} }=\:−\sum_{{k}=\mathrm{1}} ^{{n}} \frac{\mathrm{1}}{\left({x}−{x}_{{k}} \right)^{\mathrm{2}} } \\ $$$$\Rightarrow\:\sum_{{k}=\mathrm{1}} ^{{k}={n}} \frac{\mathrm{1}}{\left({x}−{x}_{{k}} \right)^{\mathrm{2}} }\:=\:\:\frac{\left(\frac{{dP}}{{dx}}\right)^{\mathrm{2}} −\:{P}\left({x}\right)\frac{{d}^{\mathrm{2}} {P}}{{dx}^{\mathrm{2}} }}{\left({P}\left({x}\right)\right)^{\mathrm{2}} }. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *