Menu Close

find-the-value-of-k-1-n-1-sin-kpi-2n-




Question Number 27153 by abdo imad last updated on 02/Jan/18
find the value of Π_(k=1) ^(n−1)  sin(((kπ)/(2n)) ) .
$${find}\:{the}\:{value}\:{of}\:\prod_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:{sin}\left(\frac{{k}\pi}{\mathrm{2}{n}}\:\right)\:. \\ $$
Commented by abdo imad last updated on 03/Jan/18
let introduce the polynomial p(x)= x^(2n)  −1  the roots of p(x)  are the complex  z_(k ) =e^(i((2k)/n))   and k∈[[0,2n−1]] and  p(x)=λ Π_(k=0) ^(n−1) (x−z_k  ) its clear that λ=1  and  p(x)=Π_(k=0) ^(n−1) (x−z_k ) we have z_0 = 1  , z_1 = e^(i(π/n))    , z_2 = e^(i((2π)/n))   z_(n−1) = e^(i(((n−1)π)/n))    ,  z_n = −1   , z_(n+1) = e^(i(((n+1)π)/n))   ,   z_(2n−1)  =e^(i(((2n−1)π)/(2n)))   we see that  z_(2n−1)  =z_1 ^−      ,  z_(2n−2) =z_2 ^−    ,   z_(n+1)  =z_(n−1) ^−   ⇒ p(x)= (x^2 −1) Π_(k=1) ^(n−1) (x −z_k  )(x−z_k ^−  )  =(x^2  −1) Π_(k=1) ^(n−1) (x^2  −2cos(((kπ)/n))x +1) and for x^2 ≠1  ((p(x))/(x^2 −1))  =  Π_(k=1) ^(n−1) ( x^2  −2cos(((kπ)/n))x +1) and by using hospital theoem  lim_(x−>1)  Π_(k=1) ^(n−1) ( x^2 −2cos(((kπ)/n))x +1) =lim_(x−>1) ((p^′ (x))/(2x))    Π_(k=1) ^(n−1) 2(1−cos(((kπ)/n)))= lim_(x−>1)  ((2nx^(2n−1) )/(2x))  =n  ⇒ 4^(n−1)  Π_(k=1) ^(k=n−1)  sin^2 (((kπ)/(2n)) )=n  ⇒     Π_(k=1) ^(n−1)  sin^2 (((kπ)/(2n)) ) = (n/4^(n−1) )  ⇒  Π_(k=1) ^(n−1)  sin (((kπ)/(2n)) )=  ((√n)/2^(n−1) )             (   n≥2)
$${let}\:{introduce}\:{the}\:{polynomial}\:{p}\left({x}\right)=\:{x}^{\mathrm{2}{n}} \:−\mathrm{1}\:\:{the}\:{roots}\:{of}\:{p}\left({x}\right) \\ $$$${are}\:{the}\:{complex}\:\:{z}_{{k}\:} ={e}^{{i}\frac{\mathrm{2}{k}}{{n}}} \:\:{and}\:{k}\in\left[\left[\mathrm{0},\mathrm{2}{n}−\mathrm{1}\right]\right]\:{and} \\ $$$${p}\left({x}\right)=\lambda\:\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left({x}−{z}_{{k}} \:\right)\:{its}\:{clear}\:{that}\:\lambda=\mathrm{1}\:\:{and} \\ $$$${p}\left({x}\right)=\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left({x}−{z}_{{k}} \right)\:{we}\:{have}\:{z}_{\mathrm{0}} =\:\mathrm{1}\:\:,\:{z}_{\mathrm{1}} =\:{e}^{{i}\frac{\pi}{{n}}} \:\:\:,\:{z}_{\mathrm{2}} =\:{e}^{{i}\frac{\mathrm{2}\pi}{{n}}} \\ $$$${z}_{{n}−\mathrm{1}} =\:{e}^{{i}\frac{\left({n}−\mathrm{1}\right)\pi}{{n}}} \:\:\:,\:\:{z}_{{n}} =\:−\mathrm{1}\:\:\:,\:{z}_{{n}+\mathrm{1}} =\:{e}^{{i}\frac{\left({n}+\mathrm{1}\right)\pi}{{n}}} \:\:,\:\:\:{z}_{\mathrm{2}{n}−\mathrm{1}} \:={e}^{{i}\frac{\left(\mathrm{2}{n}−\mathrm{1}\right)\pi}{\mathrm{2}{n}}} \\ $$$${we}\:{see}\:{that}\:\:{z}_{\mathrm{2}{n}−\mathrm{1}} \:={z}_{\mathrm{1}} ^{−} \:\:\:\:\:,\:\:{z}_{\mathrm{2}{n}−\mathrm{2}} ={z}_{\mathrm{2}} ^{−} \:\:\:,\:\:\:{z}_{{n}+\mathrm{1}} \:={z}_{{n}−\mathrm{1}} ^{−} \\ $$$$\Rightarrow\:{p}\left({x}\right)=\:\left({x}^{\mathrm{2}} −\mathrm{1}\right)\:\prod_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \left({x}\:−{z}_{{k}} \:\right)\left({x}−{z}_{{k}} ^{−} \:\right) \\ $$$$=\left({x}^{\mathrm{2}} \:−\mathrm{1}\right)\:\prod_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \left({x}^{\mathrm{2}} \:−\mathrm{2}{cos}\left(\frac{{k}\pi}{{n}}\right){x}\:+\mathrm{1}\right)\:{and}\:{for}\:{x}^{\mathrm{2}} \neq\mathrm{1} \\ $$$$\frac{{p}\left({x}\right)}{{x}^{\mathrm{2}} −\mathrm{1}}\:\:=\:\:\prod_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \left(\:{x}^{\mathrm{2}} \:−\mathrm{2}{cos}\left(\frac{{k}\pi}{{n}}\right){x}\:+\mathrm{1}\right)\:{and}\:{by}\:{using}\:{hospital}\:{theoem} \\ $$$${lim}_{{x}−>\mathrm{1}} \:\prod_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \left(\:{x}^{\mathrm{2}} −\mathrm{2}{cos}\left(\frac{{k}\pi}{{n}}\right){x}\:+\mathrm{1}\right)\:={lim}_{{x}−>\mathrm{1}} \frac{{p}^{'} \left({x}\right)}{\mathrm{2}{x}} \\ $$$$\:\:\prod_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \mathrm{2}\left(\mathrm{1}−{cos}\left(\frac{{k}\pi}{{n}}\right)\right)=\:{lim}_{{x}−>\mathrm{1}} \:\frac{\mathrm{2}{nx}^{\mathrm{2}{n}−\mathrm{1}} }{\mathrm{2}{x}}\:\:={n} \\ $$$$\Rightarrow\:\mathrm{4}^{{n}−\mathrm{1}} \:\prod_{{k}=\mathrm{1}} ^{{k}={n}−\mathrm{1}} \:{sin}^{\mathrm{2}} \left(\frac{{k}\pi}{\mathrm{2}{n}}\:\right)={n} \\ $$$$\Rightarrow\:\:\:\:\:\prod_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:{sin}^{\mathrm{2}} \left(\frac{{k}\pi}{\mathrm{2}{n}}\:\right)\:=\:\frac{{n}}{\mathrm{4}^{{n}−\mathrm{1}} } \\ $$$$\Rightarrow\:\:\prod_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:{sin}\:\left(\frac{{k}\pi}{\mathrm{2}{n}}\:\right)=\:\:\frac{\sqrt{{n}}}{\mathrm{2}^{{n}−\mathrm{1}} }\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\:\:\:{n}\geqslant\mathrm{2}\right) \\ $$
Commented by Tinkutara last updated on 03/Jan/18
I have already asked this a long time back. See this at Q 19292.

Leave a Reply

Your email address will not be published. Required fields are marked *