Menu Close

If-x-cy-bz-y-az-cx-amp-z-bx-ay-prove-that-x-2-1-a-2-y-2-1-b-2-z-2-1-c-2-




Question Number 27503 by Rasheed.Sindhi last updated on 07/Jan/18
If x=cy+bz ,y=az+cx & z=bx+ay  prove that(x^2 /(1−a^2 ))=(y^2 /(1−b^2 ))=(z^2 /(1−c^2 )) .
$$\mathrm{If}\:\mathrm{x}=\mathrm{cy}+\mathrm{bz}\:,\mathrm{y}=\mathrm{az}+\mathrm{cx}\:\&\:\mathrm{z}=\mathrm{bx}+\mathrm{ay} \\ $$$$\mathrm{prove}\:\mathrm{that}\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{1}−\mathrm{a}^{\mathrm{2}} }=\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{1}−\mathrm{b}^{\mathrm{2}} }=\frac{\mathrm{z}^{\mathrm{2}} }{\mathrm{1}−\mathrm{c}^{\mathrm{2}} }\:. \\ $$
Answered by mrW1 last updated on 07/Jan/18
−x+cy+bz=0   ..(i)  cx−y+az=0  ..(ii)  bx+ay−z=0   ..(iii)    (i)×c+(ii):  (c^2 −1)y+(a+bc)z=0  (1−c^2 )y=(a+bc)z  (1−c^2 )y^2 =(a+bc)yz  ..(iv)    (i)×b+(iii):  (a+bc)y+(b^2 −1)z=0  (1−b^2 )z=(a+bc)y  (1−b^2 )z^2 =(a+bc)yz  ..(v)    ⇒(1−c^2 )y^2 =(1−b^2 )z^2   ⇒(y^2 /(1−b^2 ))=(z^2 /(1−c^2 ))  similarly  ⇒(x^2 /(1−a^2 ))=(y^2 /(1−b^2 ))=(z^2 /(1−c^2 ))
$$−{x}+{cy}+{bz}=\mathrm{0}\:\:\:..\left({i}\right) \\ $$$${cx}−{y}+{az}=\mathrm{0}\:\:..\left({ii}\right) \\ $$$${bx}+{ay}−{z}=\mathrm{0}\:\:\:..\left({iii}\right) \\ $$$$ \\ $$$$\left({i}\right)×{c}+\left({ii}\right): \\ $$$$\left({c}^{\mathrm{2}} −\mathrm{1}\right){y}+\left({a}+{bc}\right){z}=\mathrm{0} \\ $$$$\left(\mathrm{1}−{c}^{\mathrm{2}} \right){y}=\left({a}+{bc}\right){z} \\ $$$$\left(\mathrm{1}−{c}^{\mathrm{2}} \right){y}^{\mathrm{2}} =\left({a}+{bc}\right){yz}\:\:..\left({iv}\right) \\ $$$$ \\ $$$$\left({i}\right)×{b}+\left({iii}\right): \\ $$$$\left({a}+{bc}\right){y}+\left({b}^{\mathrm{2}} −\mathrm{1}\right){z}=\mathrm{0} \\ $$$$\left(\mathrm{1}−{b}^{\mathrm{2}} \right){z}=\left({a}+{bc}\right){y} \\ $$$$\left(\mathrm{1}−{b}^{\mathrm{2}} \right){z}^{\mathrm{2}} =\left({a}+{bc}\right){yz}\:\:..\left({v}\right) \\ $$$$ \\ $$$$\Rightarrow\left(\mathrm{1}−{c}^{\mathrm{2}} \right){y}^{\mathrm{2}} =\left(\mathrm{1}−{b}^{\mathrm{2}} \right){z}^{\mathrm{2}} \\ $$$$\Rightarrow\frac{{y}^{\mathrm{2}} }{\mathrm{1}−{b}^{\mathrm{2}} }=\frac{{z}^{\mathrm{2}} }{\mathrm{1}−{c}^{\mathrm{2}} } \\ $$$${similarly} \\ $$$$\Rightarrow\frac{{x}^{\mathrm{2}} }{\mathrm{1}−{a}^{\mathrm{2}} }=\frac{{y}^{\mathrm{2}} }{\mathrm{1}−{b}^{\mathrm{2}} }=\frac{{z}^{\mathrm{2}} }{\mathrm{1}−{c}^{\mathrm{2}} } \\ $$
Commented by Rasheed.Sindhi last updated on 07/Jan/18
WELDONE  SiR!
$$\mathcal{WELDONE}\:\:\mathcal{S}{i}\mathcal{R}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *