Menu Close

find-the-value-of-0-e-x-x-dx-




Question Number 27613 by abdo imad last updated on 10/Jan/18
find the value of   ∫_0 ^∞   e^(−[x] −x) dx  .
$${find}\:{the}\:{value}\:{of}\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left[{x}\right]\:−{x}} {dx}\:\:. \\ $$
Commented by abdo imad last updated on 12/Jan/18
I_n = Σ_(k=0) ^n  ∫_k ^(k+1) e^(−[x]−x) dx  I=lim I_n   I_n  = Σ_(k=) ^n e^(−k)  [e^(−x) ]_k ^(k+1) = Σ_(k=0) ^n e^(−k) ( e^(−k)  −e^(−k−1) )   I_n = Σ_(k=0) ^n  e^(−2k)   −e^(−1) Σ_(k=0) ^n  e^(−2k)   =(1−e^(−1) ) Σ_(k=0) ^n (e^(−2) )^k   ∫_0 ^∞   e^(−[x]−x) dx = lim_(n−>∝)  I_n  =(1−e^(−1) ).(1/(1−e^(−2) ))  = ((e^2 (1−e^(−1) ))/(e^2 −1))= ((e^2  −e)/(e^2 −1))=((e(e−1))/((e+1)(e−1)))=  (e/(e+1)) .
$${I}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\int_{{k}} ^{{k}+\mathrm{1}} {e}^{−\left[{x}\right]−{x}} {dx}\:\:{I}={lim}\:{I}_{{n}} \\ $$$${I}_{{n}} \:=\:\sum_{{k}=} ^{{n}} {e}^{−{k}} \:\left[{e}^{−{x}} \right]_{{k}} ^{{k}+\mathrm{1}} =\:\sum_{{k}=\mathrm{0}} ^{{n}} {e}^{−{k}} \left(\:{e}^{−{k}} \:−{e}^{−{k}−\mathrm{1}} \right)\: \\ $$$${I}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{e}^{−\mathrm{2}{k}} \:\:−{e}^{−\mathrm{1}} \sum_{{k}=\mathrm{0}} ^{{n}} \:{e}^{−\mathrm{2}{k}} \:\:=\left(\mathrm{1}−{e}^{−\mathrm{1}} \right)\:\sum_{{k}=\mathrm{0}} ^{{n}} \left({e}^{−\mathrm{2}} \right)^{{k}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left[{x}\right]−{x}} {dx}\:=\:{lim}_{{n}−>\propto} \:{I}_{{n}} \:=\left(\mathrm{1}−{e}^{−\mathrm{1}} \right).\frac{\mathrm{1}}{\mathrm{1}−{e}^{−\mathrm{2}} } \\ $$$$=\:\frac{{e}^{\mathrm{2}} \left(\mathrm{1}−{e}^{−\mathrm{1}} \right)}{{e}^{\mathrm{2}} −\mathrm{1}}=\:\frac{{e}^{\mathrm{2}} \:−{e}}{{e}^{\mathrm{2}} −\mathrm{1}}=\frac{{e}\left({e}−\mathrm{1}\right)}{\left({e}+\mathrm{1}\right)\left({e}−\mathrm{1}\right)}=\:\:\frac{{e}}{{e}+\mathrm{1}}\:. \\ $$
Answered by prakash jain last updated on 12/Jan/18
=Σ_(i=0) ^∞ e^(−i) ∫_i ^(i+1) e^(−x) dx  =Σ_(i=0) ^∞ e^(−i) [−e^(−x) ]_i ^(i+1)   =Σ_(i=0) ^∞ (e^(−i) /e^i )−(e^(−i) /e^(i+1) )  =Σ_(i=0) ^∞ (1/e^(2i) )−(1/e^(2i+1) )  =Σ_(i=0) ^∞ (1/e^(2i) )−Σ_(i=0) ^∞ (1/e^(2i+1) )  =(1/(1−(1/e^2 )))−((1/e)/(1−(1/e^2 )))  =((e(e−1))/(e^2 −1))=(e/(e+1))
$$=\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}{e}^{−{i}} \int_{{i}} ^{{i}+\mathrm{1}} {e}^{−{x}} {dx} \\ $$$$=\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}{e}^{−{i}} \left[−{e}^{−{x}} \right]_{{i}} ^{{i}+\mathrm{1}} \\ $$$$=\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{e}^{−{i}} }{{e}^{{i}} }−\frac{{e}^{−{i}} }{{e}^{{i}+\mathrm{1}} } \\ $$$$=\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{e}^{\mathrm{2}{i}} }−\frac{\mathrm{1}}{{e}^{\mathrm{2}{i}+\mathrm{1}} } \\ $$$$=\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{e}^{\mathrm{2}{i}} }−\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{e}^{\mathrm{2}{i}+\mathrm{1}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{{e}^{\mathrm{2}} }}−\frac{\mathrm{1}/{e}}{\mathrm{1}−\frac{\mathrm{1}}{{e}^{\mathrm{2}} }} \\ $$$$=\frac{{e}\left({e}−\mathrm{1}\right)}{{e}^{\mathrm{2}} −\mathrm{1}}=\frac{{e}}{{e}+\mathrm{1}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *