Menu Close

x-2-1-x-2-47-x-1-x-




Question Number 93177 by ar247 last updated on 11/May/20
x^2 +(1/x^2 )=47  (√x)+(1/( (√x)))=...
$${x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }=\mathrm{47} \\ $$$$\sqrt{{x}}+\frac{\mathrm{1}}{\:\sqrt{{x}}}=… \\ $$
Commented by ar247 last updated on 11/May/20
help
$${help} \\ $$
Commented by prakash jain last updated on 11/May/20
Similar question answer below.  You can follow same steps Q93170
$$\mathrm{Similar}\:\mathrm{question}\:\mathrm{answer}\:\mathrm{below}. \\ $$$$\mathrm{You}\:\mathrm{can}\:\mathrm{follow}\:\mathrm{same}\:\mathrm{steps}\:\mathrm{Q93170} \\ $$
Commented by i jagooll last updated on 11/May/20
(x+(1/x))^2 −2=47 ⇒ x+(1/x) = 7  ((√x)+(1/( (√x))))^2 −2=7 ⇒ (√x) +(1/( (√x))) = 3
$$\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{x}}\right)^{\mathrm{2}} −\mathrm{2}=\mathrm{47}\:\Rightarrow\:\mathrm{x}+\frac{\mathrm{1}}{\mathrm{x}}\:=\:\mathrm{7} \\ $$$$\left(\sqrt{\mathrm{x}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{x}}}\right)^{\mathrm{2}} −\mathrm{2}=\mathrm{7}\:\Rightarrow\:\sqrt{\mathrm{x}}\:+\frac{\mathrm{1}}{\:\sqrt{\mathrm{x}}}\:=\:\mathrm{3} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *