Menu Close

find-e-1-ln2-




Question Number 68068 by mhmd last updated on 04/Sep/19
find e^(1/ln2)   =?
$${find}\:{e}^{\mathrm{1}/{ln}\mathrm{2}} \:\:=? \\ $$
Commented by peter frank last updated on 04/Sep/19
e^x =1+x+(x^2 /(2!))+(x^3 /(3!))+(x^4 /(4!))  substitute x=(1/(ln2))
$${e}^{{x}} =\mathrm{1}+{x}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}!}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}+\frac{{x}^{\mathrm{4}} }{\mathrm{4}!} \\ $$$${substitute}\:{x}=\frac{\mathrm{1}}{{ln}\mathrm{2}} \\ $$
Commented by mathmax by abdo last updated on 04/Sep/19
for x≠0  we have e^(1/x)  =Σ_(n=0) ^∞    (1/(n!x^n )) =1+(1/x) +(1/(2!x^2 )) +(1/(3!x^3 )) +...  let take x =ln(2) ⇒e^(1/(ln2))  =1+(1/(ln(2))) +(1/(2!(ln2)^2 )) +(1/(3!(ln(2))^3 )) +...  and if we want a spproximate value we can take 10 terms  for this serie.
$${for}\:{x}\neq\mathrm{0}\:\:{we}\:{have}\:{e}^{\frac{\mathrm{1}}{{x}}} \:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}}{{n}!{x}^{{n}} }\:=\mathrm{1}+\frac{\mathrm{1}}{{x}}\:+\frac{\mathrm{1}}{\mathrm{2}!{x}^{\mathrm{2}} }\:+\frac{\mathrm{1}}{\mathrm{3}!{x}^{\mathrm{3}} }\:+… \\ $$$${let}\:{take}\:{x}\:={ln}\left(\mathrm{2}\right)\:\Rightarrow{e}^{\frac{\mathrm{1}}{{ln}\mathrm{2}}} \:=\mathrm{1}+\frac{\mathrm{1}}{{ln}\left(\mathrm{2}\right)}\:+\frac{\mathrm{1}}{\mathrm{2}!\left({ln}\mathrm{2}\right)^{\mathrm{2}} }\:+\frac{\mathrm{1}}{\mathrm{3}!\left({ln}\left(\mathrm{2}\right)\right)^{\mathrm{3}} }\:+… \\ $$$${and}\:{if}\:{we}\:{want}\:{a}\:{spproximate}\:{value}\:{we}\:{can}\:{take}\:\mathrm{10}\:{terms} \\ $$$${for}\:{this}\:{serie}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *