Menu Close

lim-x-0-1-tanx-cotx-




Question Number 28093 by tawa tawa last updated on 20/Jan/18
lim_(x→0^− )   (1 + tanx)^(cotx)
$$\underset{{x}\rightarrow\mathrm{0}^{−} } {\mathrm{lim}}\:\:\left(\mathrm{1}\:+\:\mathrm{tanx}\right)^{\mathrm{cotx}} \\ $$
Commented by abdo imad last updated on 20/Jan/18
=lim_(x→0^− )       (1/((1+tanx)^(−cotanx) ))=   (1/e^(−1) )=e   .
$$={lim}_{{x}\rightarrow\mathrm{0}^{−} } \:\:\:\:\:\:\frac{\mathrm{1}}{\left(\mathrm{1}+{tanx}\right)^{−{cotanx}} }=\:\:\:\frac{\mathrm{1}}{{e}^{−\mathrm{1}} }={e}\:\:\:. \\ $$
Commented by tawa tawa last updated on 21/Jan/18
God bless you sir
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *