Menu Close

hi-solve-in-IN-IN-this-one-x-1-y-2-2xy-thanks-




Question Number 159249 by henderson last updated on 14/Nov/21
hi !  solve in IN×IN this one : (x+1)(y+2)=2xy.  thanks.
$$\boldsymbol{\mathrm{hi}}\:! \\ $$$$\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{IN}}×\boldsymbol{\mathrm{IN}}\:\boldsymbol{\mathrm{this}}\:\boldsymbol{\mathrm{one}}\::\:\left(\boldsymbol{{x}}+\mathrm{1}\right)\left(\boldsymbol{{y}}+\mathrm{2}\right)=\mathrm{2}\boldsymbol{{xy}}. \\ $$$$\boldsymbol{\mathrm{thanks}}. \\ $$
Answered by FongXD last updated on 14/Nov/21
⇔ 2x+2+(x+1)y=2xy  ⇒ y=((2x+2)/(x−1))=2+(4/(x−1))∈N  ⇒  { ((x−1=1)),((x−1=2)),((x−1=4)) :}  • x=2, y=6  • x=3, y=4  • x=5, y=3
$$\Leftrightarrow\:\mathrm{2x}+\mathrm{2}+\left(\mathrm{x}+\mathrm{1}\right)\mathrm{y}=\mathrm{2xy} \\ $$$$\Rightarrow\:\mathrm{y}=\frac{\mathrm{2x}+\mathrm{2}}{\mathrm{x}−\mathrm{1}}=\mathrm{2}+\frac{\mathrm{4}}{\mathrm{x}−\mathrm{1}}\in\mathbb{N} \\ $$$$\Rightarrow\:\begin{cases}{\mathrm{x}−\mathrm{1}=\mathrm{1}}\\{\mathrm{x}−\mathrm{1}=\mathrm{2}}\\{\mathrm{x}−\mathrm{1}=\mathrm{4}}\end{cases} \\ $$$$\bullet\:\mathrm{x}=\mathrm{2},\:\mathrm{y}=\mathrm{6} \\ $$$$\bullet\:\mathrm{x}=\mathrm{3},\:\mathrm{y}=\mathrm{4} \\ $$$$\bullet\:\mathrm{x}=\mathrm{5},\:\mathrm{y}=\mathrm{3} \\ $$
Commented by Rasheed.Sindhi last updated on 15/Nov/21
∩i⊂∈!
$$\cap\mathrm{i}\subset\in! \\ $$
Commented by henderson last updated on 15/Nov/21
thanks, Sir FongXD !
$$\boldsymbol{\mathrm{thanks}},\:\boldsymbol{\mathrm{Sir}}\:\boldsymbol{\mathrm{FongXD}}\:! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *