Menu Close

Question-28190




Question Number 28190 by ajfour last updated on 21/Jan/18
Commented by ajfour last updated on 21/Jan/18
Q. 28188   (solution)  find least value of [∣z_1 +z_2 ∣]+1  if  z_1 , z_2 , z_3 , z_4  are roots of  z^4 +z^3 +z^2 +z+1=0  .
$${Q}.\:\mathrm{28188}\:\:\:\left({solution}\right) \\ $$$${find}\:{least}\:{value}\:{of}\:\left[\mid{z}_{\mathrm{1}} +{z}_{\mathrm{2}} \mid\right]+\mathrm{1} \\ $$$${if}\:\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} ,\:{z}_{\mathrm{3}} ,\:{z}_{\mathrm{4}} \:{are}\:{roots}\:{of} \\ $$$${z}^{\mathrm{4}} +{z}^{\mathrm{3}} +{z}^{\mathrm{2}} +{z}+\mathrm{1}=\mathrm{0}\:\:. \\ $$
Commented by abdo imad last updated on 21/Jan/18
e)⇔ z^5 =1 and z≠1 the roots of the polynomial z^5 −1=0  are z_k = e^(i((2kπ)/5))  with k∈[[1 ,4]] if we take z_1 =e^(i((2π)/5))  and  z_2 =^  e^(i((4π)/5))  we have  z_2 = e^(i(π−(π/5))) =−z_1 ^−   ⇒z_1  +z_2 =2i Im(z_1 )  = 2i sin( ((2π)/5))  and ∣z_1 +z_2 ∣= 2sin(2(π/5))and  [∣z_1 +z_2 ∣]+1= [2sin(((2π)/(5))))]+1   but we know that  cos((π/5))= ((1+(√5))/4)  ⇒sin((π/5))=(√( 1−(((1+(√(5)^2 )))/(16))))  =((√(16−(6+2(√5))))/4)= ((√(10−2(√5)))/4) and  sin(((2π)/5))=2sin((π/5))cos((π/5))=2 ((√(10−2(√5)))/4) ((1+(√5))/4)  =(((1+(√(5)))(√(10−2(√5))))/8) ⇒2sin(((2π)/5))= (((1+(√5))(√(10−2(√5))))/4)  = ((√((6+2(√5))(10−2(√5))))/4)=((√(60−12(√5)+20(√5)−20))/4)  =((√(40+8(√5)))/4) =((√(10+2(√5)))/2)=(√((5/2) +((√5)/2)))=(√((5+(√5))/2))   ∼(√(3,5))  but  we have    1<(√(3,5))<2 ⇒[(√(3,5)) ]=1 so  [∣z_1 +z_2 ∣]+1=2  .
$$\left.{e}\right)\Leftrightarrow\:{z}^{\mathrm{5}} =\mathrm{1}\:{and}\:{z}\neq\mathrm{1}\:{the}\:{roots}\:{of}\:{the}\:{polynomial}\:{z}^{\mathrm{5}} −\mathrm{1}=\mathrm{0} \\ $$$${are}\:{z}_{{k}} =\:{e}^{{i}\frac{\mathrm{2}{k}\pi}{\mathrm{5}}} \:{with}\:{k}\in\left[\left[\mathrm{1}\:,\mathrm{4}\right]\right]\:{if}\:{we}\:{take}\:{z}_{\mathrm{1}} ={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{5}}} \:{and} \\ $$$${z}_{\mathrm{2}} =^{} \:{e}^{{i}\frac{\mathrm{4}\pi}{\mathrm{5}}} \:{we}\:{have}\:\:{z}_{\mathrm{2}} =\:{e}^{{i}\left(\pi−\frac{\pi}{\mathrm{5}}\right)} =−{z}_{\mathrm{1}} ^{−} \:\:\Rightarrow{z}_{\mathrm{1}} \:+{z}_{\mathrm{2}} =\mathrm{2}{i}\:{Im}\left({z}_{\mathrm{1}} \right) \\ $$$$=\:\mathrm{2}{i}\:{sin}\left(\:\frac{\mathrm{2}\pi}{\mathrm{5}}\right)\:\:{and}\:\mid{z}_{\mathrm{1}} +{z}_{\mathrm{2}} \mid=\:\mathrm{2}{sin}\left(\mathrm{2}\frac{\pi}{\mathrm{5}}\right){and} \\ $$$$\left[\mid{z}_{\mathrm{1}} +{z}_{\mathrm{2}} \mid\right]+\mathrm{1}=\:\left[\mathrm{2}{sin}\left(\frac{\mathrm{2}\pi}{\left.\mathrm{5}\right)}\right)\right]+\mathrm{1}\:\:\:{but}\:{we}\:{know}\:{that} \\ $$$${cos}\left(\frac{\pi}{\mathrm{5}}\right)=\:\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{4}}\:\:\Rightarrow{sin}\left(\frac{\pi}{\mathrm{5}}\right)=\sqrt{\:\mathrm{1}−\frac{\left(\mathrm{1}+\sqrt{\left.\mathrm{5}\right)^{\mathrm{2}} }\right.}{\mathrm{16}}} \\ $$$$=\frac{\sqrt{\mathrm{16}−\left(\mathrm{6}+\mathrm{2}\sqrt{\mathrm{5}}\right)}}{\mathrm{4}}=\:\frac{\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{5}}}}{\mathrm{4}}\:{and} \\ $$$${sin}\left(\frac{\mathrm{2}\pi}{\mathrm{5}}\right)=\mathrm{2}{sin}\left(\frac{\pi}{\mathrm{5}}\right){cos}\left(\frac{\pi}{\mathrm{5}}\right)=\mathrm{2}\:\frac{\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{5}}}}{\mathrm{4}}\:\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{4}} \\ $$$$=\frac{\left(\mathrm{1}+\sqrt{\left.\mathrm{5}\right)}\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{5}}}\right.}{\mathrm{8}}\:\Rightarrow\mathrm{2}{sin}\left(\frac{\mathrm{2}\pi}{\mathrm{5}}\right)=\:\frac{\left(\mathrm{1}+\sqrt{\mathrm{5}}\right)\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{5}}}}{\mathrm{4}} \\ $$$$=\:\frac{\sqrt{\left(\mathrm{6}+\mathrm{2}\sqrt{\mathrm{5}}\right)\left(\mathrm{10}−\mathrm{2}\sqrt{\mathrm{5}}\right)}}{\mathrm{4}}=\frac{\sqrt{\mathrm{60}−\mathrm{12}\sqrt{\mathrm{5}}+\mathrm{20}\sqrt{\mathrm{5}}−\mathrm{20}}}{\mathrm{4}} \\ $$$$=\frac{\sqrt{\mathrm{40}+\mathrm{8}\sqrt{\mathrm{5}}}}{\mathrm{4}}\:=\frac{\sqrt{\mathrm{10}+\mathrm{2}\sqrt{\mathrm{5}}}}{\mathrm{2}}=\sqrt{\frac{\mathrm{5}}{\mathrm{2}}\:+\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}}=\sqrt{\frac{\mathrm{5}+\sqrt{\mathrm{5}}}{\mathrm{2}}}\:\:\:\sim\sqrt{\mathrm{3},\mathrm{5}}\:\:{but} \\ $$$${we}\:{have}\:\:\:\:\mathrm{1}<\sqrt{\mathrm{3},\mathrm{5}}<\mathrm{2}\:\Rightarrow\left[\sqrt{\mathrm{3},\mathrm{5}}\:\right]=\mathrm{1}\:{so} \\ $$$$\left[\mid{z}_{\mathrm{1}} +{z}_{\mathrm{2}} \mid\right]+\mathrm{1}=\mathrm{2}\:\:. \\ $$
Answered by ajfour last updated on 21/Jan/18
((1−z^5 )/(1−z))=0  so z_1 , z_2 , z_3 , z_4 , 1 are roots of  z^5 =1   (fifth roots of unity)  Least value of ∣z_1 +z_2 ∣=2cos 72°     =2sin 18° < 2sin 30°   (=1)  So least value of [∣z_1 +z_2 ∣]+1=1 .
$$\frac{\mathrm{1}−{z}^{\mathrm{5}} }{\mathrm{1}−{z}}=\mathrm{0} \\ $$$${so}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} ,\:{z}_{\mathrm{3}} ,\:{z}_{\mathrm{4}} ,\:\mathrm{1}\:{are}\:{roots}\:{of} \\ $$$${z}^{\mathrm{5}} =\mathrm{1}\:\:\:\left({fifth}\:{roots}\:{of}\:{unity}\right) \\ $$$${Least}\:{value}\:{of}\:\mid{z}_{\mathrm{1}} +{z}_{\mathrm{2}} \mid=\mathrm{2cos}\:\mathrm{72}° \\ $$$$\:\:\:=\mathrm{2sin}\:\mathrm{18}°\:<\:\mathrm{2sin}\:\mathrm{30}°\:\:\:\left(=\mathrm{1}\right) \\ $$$${So}\:{least}\:{value}\:{of}\:\left[\mid{z}_{\mathrm{1}} +{z}_{\mathrm{2}} \mid\right]+\mathrm{1}=\mathrm{1}\:. \\ $$$$ \\ $$
Commented by ajfour last updated on 24/Jan/18
German or Indian Sir ?
$${German}\:{or}\:{Indian}\:{Sir}\:? \\ $$
Commented by math solver last updated on 24/Jan/18
thank you so much sir !
$${thank}\:{you}\:{so}\:{much}\:{sir}\:! \\ $$
Commented by math solver last updated on 22/Jan/18
2cos 72 °kaise aayi least value ?
$$\mathrm{2}{cos}\:\mathrm{72}\:°{kaise}\:{aayi}\:{least}\:{value}\:? \\ $$
Commented by ajfour last updated on 22/Jan/18
to get least value of ∣z_1 +z_2 ∣  we have to choose (see diagram)  such z_i  and z_j  that the manitude  of their resultant is least  as closer to 180° as can be.  here we can only have 144° .  then   ∣z_1 +z_3 ∣=∣z_1 +z_4 ∣=∣z_2 +z_4 ∣  all equal  2cos 72° .  other pairs of z_i , z_j  yield  greater values of ∣z_i +z_j ∣ .
$${to}\:{get}\:{least}\:{value}\:{of}\:\mid{z}_{\mathrm{1}} +{z}_{\mathrm{2}} \mid \\ $$$${we}\:{have}\:{to}\:{choose}\:\left({see}\:{diagram}\right) \\ $$$${such}\:{z}_{{i}} \:{and}\:{z}_{{j}} \:{that}\:{the}\:{manitude} \\ $$$${of}\:{their}\:{resultant}\:{is}\:{least} \\ $$$${as}\:{closer}\:{to}\:\mathrm{180}°\:{as}\:{can}\:{be}. \\ $$$${here}\:{we}\:{can}\:{only}\:{have}\:\mathrm{144}°\:. \\ $$$${then}\:\:\:\mid{z}_{\mathrm{1}} +{z}_{\mathrm{3}} \mid=\mid{z}_{\mathrm{1}} +{z}_{\mathrm{4}} \mid=\mid{z}_{\mathrm{2}} +{z}_{\mathrm{4}} \mid \\ $$$${all}\:{equal}\:\:\mathrm{2cos}\:\mathrm{72}°\:. \\ $$$${other}\:{pairs}\:{of}\:{z}_{{i}} ,\:{z}_{{j}} \:{yield} \\ $$$${greater}\:{values}\:{of}\:\mid{z}_{{i}} +{z}_{{j}} \mid\:. \\ $$
Commented by math solver last updated on 22/Jan/18
sorry sir , i m still not getting  2cos72° .
$${sorry}\:{sir}\:,\:{i}\:{m}\:{still}\:{not}\:{getting} \\ $$$$\mathrm{2}{cos}\mathrm{72}°\:. \\ $$
Commented by mrW2 last updated on 23/Jan/18
Commented by math solver last updated on 24/Jan/18
hey , r u mrw1 sir ?  the one from germany.
$${hey}\:,\:{r}\:{u}\:{mrw}\mathrm{1}\:{sir}\:? \\ $$$${the}\:{one}\:{from}\:{germany}. \\ $$
Commented by mrW2 last updated on 24/Jan/18
yes sir.  mrW2=mrW1=mrW
$${yes}\:{sir}. \\ $$$${mrW}\mathrm{2}={mrW}\mathrm{1}={mrW} \\ $$
Commented by mrW2 last updated on 24/Jan/18
I′m from Germany Sir.
$${I}'{m}\:{from}\:{Germany}\:{Sir}. \\ $$
Commented by ajfour last updated on 24/Jan/18
Nice to confirm Sir. I had liked   Franz Kafka′s works Sir.  especially ′The Castle′.
$${Nice}\:{to}\:{confirm}\:{Sir}.\:{I}\:{had}\:{liked}\: \\ $$$${Franz}\:{Kafka}'{s}\:{works}\:{Sir}. \\ $$$${especially}\:'{The}\:{Castle}'. \\ $$
Commented by mrW2 last updated on 24/Jan/18
Nice to know that Sir.
$${Nice}\:{to}\:{know}\:{that}\:{Sir}. \\ $$
Commented by abdo imad last updated on 25/Jan/18
are you indian sir ajfour ?  me  i am from morocco...
$${are}\:{you}\:{indian}\:{sir}\:{ajfour}\:?\:\:{me}\:\:{i}\:{am}\:{from}\:{morocco}… \\ $$
Commented by math solver last updated on 25/Jan/18
yes , he is from india.  P.S: i am also an indian :)
$${yes}\:,\:{he}\:{is}\:{from}\:{india}. \\ $$$$\left.{P}.{S}:\:{i}\:{am}\:{also}\:{an}\:{indian}\::\right) \\ $$
Commented by ajfour last updated on 25/Jan/18
never outside India (physically).
$${never}\:{outside}\:{India}\:\left({physically}\right). \\ $$
Commented by abdo imad last updated on 25/Jan/18
nice to know you ajfour ,p.s. prakash jain .mrw....wish you   you good luck....
$${nice}\:{to}\:{know}\:{you}\:{ajfour}\:,{p}.{s}.\:{prakash}\:{jain}\:.{mrw}….{wish}\:{you}\: \\ $$$${you}\:{good}\:{luck}…. \\ $$
Commented by mrW2 last updated on 25/Jan/18
Thanks Sir!
$${Thanks}\:{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *