Menu Close

how-to-think-from-1-2-3-n-n-n-1-2-1-2-2-2-3-2-n-2-n-n-1-2n-1-6-1-3-2-3-3-3-n-3-n-n-1-2-2-




Question Number 159330 by bounhome last updated on 15/Nov/21
how to think from   1+2+3+...+n=((n(n+1))/2)  1^2 +2^2 +3^2 +...+n^2 =((n(n+1)(2n+1))/6)  1^3 +2^3 +3^3 +...+n^3 =(((n(n+1))/2))^2
$${how}\:{to}\:{think}\:{from}\: \\ $$$$\mathrm{1}+\mathrm{2}+\mathrm{3}+…+{n}=\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}} \\ $$$$\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} +…+{n}^{\mathrm{2}} =\frac{{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{6}} \\ $$$$\mathrm{1}^{\mathrm{3}} +\mathrm{2}^{\mathrm{3}} +\mathrm{3}^{\mathrm{3}} +…+{n}^{\mathrm{3}} =\left(\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$
Answered by Ar Brandon last updated on 15/Nov/21
S=1+2+3+...(n−2)+(n−1)+n  S=n+(n−1)+(n−2)...+3+2+1  2S=(n+1)+(n+1)+(n+1)+...+(n+1)+(n+1)+(n+1)        =n(n+1)⇒S=((n(n+1))/2)
$${S}=\mathrm{1}+\mathrm{2}+\mathrm{3}+…\left(\mathrm{n}−\mathrm{2}\right)+\left(\mathrm{n}−\mathrm{1}\right)+\mathrm{n} \\ $$$${S}=\mathrm{n}+\left(\mathrm{n}−\mathrm{1}\right)+\left(\mathrm{n}−\mathrm{2}\right)…+\mathrm{3}+\mathrm{2}+\mathrm{1} \\ $$$$\mathrm{2}{S}=\left(\mathrm{n}+\mathrm{1}\right)+\left(\mathrm{n}+\mathrm{1}\right)+\left(\mathrm{n}+\mathrm{1}\right)+…+\left(\mathrm{n}+\mathrm{1}\right)+\left(\mathrm{n}+\mathrm{1}\right)+\left(\mathrm{n}+\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:=\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)\Rightarrow{S}=\frac{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *