Menu Close

let-give-A-1-1-2-1-find-e-A-and-e-tA-




Question Number 28258 by abdo imad last updated on 22/Jan/18
let give A  = ( 1       1 )                             (  2    −1)    find  e^(A )     and   e^(−tA) .
$${let}\:{give}\:{A}\:\:=\:\left(\:\mathrm{1}\:\:\:\:\:\:\:\mathrm{1}\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\:\:\mathrm{2}\:\:\:\:−\mathrm{1}\right) \\ $$$$\:\:{find}\:\:{e}^{{A}\:} \:\:\:\:{and}\:\:\:{e}^{−{tA}} .\:\: \\ $$
Commented by abdo imad last updated on 23/Jan/18
e^A = Σ_(n=0) ^∝   (A^n /(n!))   let  find  A^n  the carscteristic polynomial  of  A  is P_c (A)=det(A −XI)= determinant (((1−X       1)),((2           −1−X)))  =−(1−X^2 ) −2= X^2 −3 =(X−(√3))(X +(√(3)))  so the proper values of A?are λ_1 =(√3)  and λ_2 =−(√3)  V(λ_1 ) =ker(A −λ_1 I)  u(x,y)∈V(λ_1 )⇔ (A −λ_1 I)u=0   (((1−(√3)        1)),((2        −2−(√3))) )   ((x),(y) ) = (((o )),(o) )   after cslculus we find  V( λ_1 )= D_e_(1 )    with e_1  ((1),((−(1−(√3)))) )    V(λ_2 )=ker(A −λ_(2 ) I)  u(x,y)∈V(λ_2 )  ⇔ (A −λ_2 I)u=0  ⇔ (((1+(√3)       1)),((2         −1+(√3))) )   ((x),(y) ) = ((0),(0) ) after calculus we find  V(λ_2 )= D_e_2       with  e_2  ((1),((−(1+(√(3))))) )   so the diagonal  mstrix is D=  ((((√3)         0 )),((0          −(√3_ ))) )  and  the inversible  matrix id  P=    (((1                                  1)),((−(1−(√3)       −(1+(√3)  )    )) )  we have  P^(−1)    =((tran(com P))/(detP))  .   com(P)= (−1)^(i+j)  a_(ij)   we find  P^(−1) = (1/(2(√3)))  (((1+(√3)                 1)),((−(1−(√(3)))       −1)) )   we have A =PDP^(−1)    ⇒  A^n = P D^n P^(−1)   after all calculus we find      A^n    =(1/(2(√3)))        (     ((√3)  )^n (1+(√3))−(−(√3))^n (1−(√3))           ((√3))^n  −(−(√3))^n     )                            (   2 ((√3))^n    −2(−(√3))^n                 −(1−(√3))((√3))^n   +(1+(√3)) (−(√3))^n      )   .                       we have  e^A   = Σ_(n=0) ^∝   (A^n /(n!))  and  e^(tA)   = Σ_(n=0) ^∝   A^n    (t^n /(n!)) .
$${e}^{{A}} =\:\sum_{{n}=\mathrm{0}} ^{\propto} \:\:\frac{{A}^{{n}} }{{n}!}\:\:\:{let}\:\:{find}\:\:{A}^{{n}} \:{the}\:{carscteristic}\:{polynomial} \\ $$$${of}\:\:{A}\:\:{is}\:{P}_{{c}} \left({A}\right)={det}\left({A}\:−{XI}\right)=\begin{vmatrix}{\mathrm{1}−{X}\:\:\:\:\:\:\:\mathrm{1}}\\{\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:−\mathrm{1}−{X}}\end{vmatrix} \\ $$$$=−\left(\mathrm{1}−{X}^{\mathrm{2}} \right)\:−\mathrm{2}=\:{X}^{\mathrm{2}} −\mathrm{3}\:=\left({X}−\sqrt{\mathrm{3}}\right)\left({X}\:+\sqrt{\left.\mathrm{3}\right)}\right. \\ $$$${so}\:{the}\:{proper}\:{values}\:{of}\:{A}?{are}\:\lambda_{\mathrm{1}} =\sqrt{\mathrm{3}}\:\:{and}\:\lambda_{\mathrm{2}} =−\sqrt{\mathrm{3}} \\ $$$${V}\left(\lambda_{\mathrm{1}} \right)\:={ker}\left({A}\:−\lambda_{\mathrm{1}} {I}\right) \\ $$$${u}\left({x},{y}\right)\in{V}\left(\lambda_{\mathrm{1}} \right)\Leftrightarrow\:\left({A}\:−\lambda_{\mathrm{1}} {I}\right){u}=\mathrm{0} \\ $$$$\begin{pmatrix}{\mathrm{1}−\sqrt{\mathrm{3}}\:\:\:\:\:\:\:\:\mathrm{1}}\\{\mathrm{2}\:\:\:\:\:\:\:\:−\mathrm{2}−\sqrt{\mathrm{3}}}\end{pmatrix}\:\:\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix}\:=\begin{pmatrix}{{o}\:}\\{{o}}\end{pmatrix}\:\:\:{after}\:{cslculus}\:{we}\:{find} \\ $$$${V}\left(\:\lambda_{\mathrm{1}} \right)=\:{D}_{{e}_{\mathrm{1}\:} } \:\:{with}\:{e}_{\mathrm{1}} \begin{pmatrix}{\mathrm{1}}\\{−\left(\mathrm{1}−\sqrt{\mathrm{3}}\right)}\end{pmatrix}\:\: \\ $$$${V}\left(\lambda_{\mathrm{2}} \right)={ker}\left({A}\:−\lambda_{\mathrm{2}\:} {I}\right) \\ $$$${u}\left({x},{y}\right)\in{V}\left(\lambda_{\mathrm{2}} \right)\:\:\Leftrightarrow\:\left({A}\:−\lambda_{\mathrm{2}} {I}\right){u}=\mathrm{0} \\ $$$$\Leftrightarrow\begin{pmatrix}{\mathrm{1}+\sqrt{\mathrm{3}}\:\:\:\:\:\:\:\mathrm{1}}\\{\mathrm{2}\:\:\:\:\:\:\:\:\:−\mathrm{1}+\sqrt{\mathrm{3}}}\end{pmatrix}\:\:\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix}\:=\begin{pmatrix}{\mathrm{0}}\\{\mathrm{0}}\end{pmatrix}\:{after}\:{calculus}\:{we}\:{find} \\ $$$${V}\left(\lambda_{\mathrm{2}} \right)=\:{D}_{{e}_{\mathrm{2}} } \:\:\:\:\:{with}\:\:{e}_{\mathrm{2}} \begin{pmatrix}{\mathrm{1}}\\{−\left(\mathrm{1}+\sqrt{\left.\mathrm{3}\right)}\right.}\end{pmatrix}\:\:\:{so}\:{the}\:{diagonal} \\ $$$${mstrix}\:{is}\:{D}=\:\begin{pmatrix}{\sqrt{\mathrm{3}}\:\:\:\:\:\:\:\:\:\mathrm{0}\:}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:−\sqrt{\mathrm{3}_{} }}\end{pmatrix}\:\:{and}\:\:{the}\:{inversible} \\ $$$${matrix}\:{id}\:\:{P}=\:\:\:\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\\{−\left(\mathrm{1}−\sqrt{\mathrm{3}}\:\:\:\:\:\:\:−\left(\mathrm{1}+\sqrt{\mathrm{3}}\:\:\right)\:\:\:\:\right.}\end{pmatrix}\:\:{we}\:{have} \\ $$$${P}^{−\mathrm{1}} \:\:\:=\frac{{tran}\left({com}\:{P}\right)}{{detP}}\:\:.\:\:\:{com}\left({P}\right)=\:\left(−\mathrm{1}\right)^{{i}+{j}} \:{a}_{{ij}} \:\:{we}\:{find} \\ $$$${P}^{−\mathrm{1}} =\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}}\:\begin{pmatrix}{\mathrm{1}+\sqrt{\mathrm{3}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\\{−\left(\mathrm{1}−\sqrt{\left.\mathrm{3}\right)}\:\:\:\:\:\:\:−\mathrm{1}\right.}\end{pmatrix}\:\:\:{we}\:{have}\:{A}\:={PDP}^{−\mathrm{1}} \: \\ $$$$\Rightarrow\:\:{A}^{{n}} =\:{P}\:{D}^{{n}} {P}^{−\mathrm{1}} \:\:{after}\:{all}\:{calculus}\:{we}\:{find} \\ $$$$\:\:\:\:{A}^{{n}} \:\:\:=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}}\:\:\:\:\:\:\:\:\left(\:\:\:\:\:\left(\sqrt{\mathrm{3}}\:\:\right)^{{n}} \left(\mathrm{1}+\sqrt{\mathrm{3}}\right)−\left(−\sqrt{\mathrm{3}}\right)^{{n}} \left(\mathrm{1}−\sqrt{\mathrm{3}}\right)\:\:\:\:\:\:\:\:\:\:\:\left(\sqrt{\mathrm{3}}\right)^{{n}} \:−\left(−\sqrt{\mathrm{3}}\right)^{{n}} \:\:\:\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\:\:\:\mathrm{2}\:\left(\sqrt{\mathrm{3}}\right)^{{n}} \:\:\:−\mathrm{2}\left(−\sqrt{\mathrm{3}}\right)^{{n}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\left(\mathrm{1}−\sqrt{\mathrm{3}}\right)\left(\sqrt{\mathrm{3}}\right)^{{n}} \:\:+\left(\mathrm{1}+\sqrt{\mathrm{3}}\right)\:\left(−\sqrt{\mathrm{3}}\right)^{{n}} \:\:\:\:\:\right)\:\:\:.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$${we}\:{have}\:\:{e}^{{A}} \:\:=\:\sum_{{n}=\mathrm{0}} ^{\propto} \:\:\frac{{A}^{{n}} }{{n}!}\:\:{and}\:\:{e}^{{tA}} \:\:=\:\sum_{{n}=\mathrm{0}} ^{\propto} \:\:{A}^{{n}} \:\:\:\frac{{t}^{{n}} }{{n}!}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *