Menu Close

let-give-1-1-1-A-1-1-1-1-1-1-and-the-matrices-I-1-0-0-




Question Number 28260 by abdo imad last updated on 22/Jan/18
let give    (    1     1     −1)               A=     (   1     1         1 )                        ( −1   1         1  )  and the matrices  I=  (  1     0      0 )                                                   ( 0    1       1 )                                                    ( 0    0      1 )  and  J=   (  0       1      −1)                       (  1       0         1).                             ( −1    1         0)  1) find  J^2  and J^(−1) .   2)  let put  J^n = x_n I +y_n J    .prove that   x_(n+2 ) +x_(n+1)  −2x_n  =0   3) calculate  J^n and A^n .
$${let}\:{give}\:\:\:\:\left(\:\:\:\:\mathrm{1}\:\:\:\:\:\mathrm{1}\:\:\:\:\:−\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{A}=\:\:\:\:\:\left(\:\:\:\mathrm{1}\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\:\:\:\mathrm{1}\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\:−\mathrm{1}\:\:\:\mathrm{1}\:\:\:\:\:\:\:\:\:\mathrm{1}\:\:\right) \\ $$$${and}\:{the}\:{matrices}\:\:{I}=\:\:\left(\:\:\mathrm{1}\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\mathrm{0}\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\:\mathrm{0}\:\:\:\:\mathrm{1}\:\:\:\:\:\:\:\mathrm{1}\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\:\mathrm{0}\:\:\:\:\mathrm{0}\:\:\:\:\:\:\mathrm{1}\:\right) \\ $$$${and}\:\:{J}=\:\:\:\left(\:\:\mathrm{0}\:\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:−\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\:\:\mathrm{1}\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\mathrm{1}\right).\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\:−\mathrm{1}\:\:\:\:\mathrm{1}\:\:\:\:\:\:\:\:\:\mathrm{0}\right) \\ $$$$\left.\mathrm{1}\right)\:{find}\:\:{J}^{\mathrm{2}} \:{and}\:{J}^{−\mathrm{1}} .\: \\ $$$$\left.\mathrm{2}\right)\:\:{let}\:{put}\:\:{J}^{{n}} =\:{x}_{{n}} {I}\:+{y}_{{n}} {J}\:\:\:\:.{prove}\:{that}\: \\ $$$${x}_{{n}+\mathrm{2}\:} +{x}_{{n}+\mathrm{1}} \:−\mathrm{2}{x}_{{n}} \:=\mathrm{0}\: \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\:{J}^{{n}} {and}\:{A}^{{n}} . \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *