Menu Close

define-increasing-and-decreasing-function-with-example-




Question Number 159338 by zakirullah last updated on 15/Nov/21
define increasing  and decreasing function with example?
$${define}\:{increasing} \\ $$$${and}\:{decreasing}\:{function}\:{with}\:{example}? \\ $$
Answered by physicstutes last updated on 15/Nov/21
increasing function  Let f(x) be a function. Then  f(x) is an increasing function  if it has a positive gradient.  That is f ′(x) >0 .  For example: f(x) = x^3  + x  is always increasing. Why?  f ′(x) = 3x^2 +1 > 0  ∀ x ∈R.    decreasing function  Let g(x)  be a function. Then g(x) is  called a decreasing function if it has  a negative gradient. That is g′(x) < 0.  For example:  g(x) = −x^3 −x is always decreasing.  Why?  g′(x) = −(3x^2 +1) < 0 ∀x∈R
$$\boldsymbol{\mathrm{increasing}}\:\boldsymbol{\mathrm{function}} \\ $$$$\mathrm{Let}\:{f}\left({x}\right)\:\mathrm{be}\:\mathrm{a}\:\mathrm{function}.\:\mathrm{Then} \\ $$$${f}\left({x}\right)\:\mathrm{is}\:\mathrm{an}\:\mathrm{increasing}\:\mathrm{function} \\ $$$$\mathrm{if}\:\mathrm{it}\:\mathrm{has}\:\mathrm{a}\:\mathrm{positive}\:\mathrm{gradient}. \\ $$$$\mathrm{That}\:\mathrm{is}\:{f}\:'\left({x}\right)\:>\mathrm{0}\:. \\ $$$$\mathrm{For}\:\mathrm{example}:\:{f}\left({x}\right)\:=\:{x}^{\mathrm{3}} \:+\:{x} \\ $$$$\mathrm{is}\:\mathrm{always}\:\mathrm{increasing}.\:\mathrm{Why}? \\ $$$${f}\:'\left({x}\right)\:=\:\mathrm{3}{x}^{\mathrm{2}} +\mathrm{1}\:>\:\mathrm{0}\:\:\forall\:{x}\:\in\mathbb{R}. \\ $$$$ \\ $$$$\boldsymbol{\mathrm{decreasing}}\:\boldsymbol{\mathrm{function}} \\ $$$$\mathrm{Let}\:\mathrm{g}\left({x}\right)\:\:\mathrm{be}\:\mathrm{a}\:\mathrm{function}.\:\mathrm{Then}\:\mathrm{g}\left({x}\right)\:\mathrm{is} \\ $$$$\mathrm{called}\:\mathrm{a}\:\mathrm{decreasing}\:\mathrm{function}\:\mathrm{if}\:\mathrm{it}\:\mathrm{has} \\ $$$$\mathrm{a}\:\mathrm{negative}\:\mathrm{gradient}.\:\mathrm{That}\:\mathrm{is}\:\mathrm{g}'\left({x}\right)\:<\:\mathrm{0}. \\ $$$$\mathrm{For}\:\mathrm{example}: \\ $$$$\mathrm{g}\left({x}\right)\:=\:−{x}^{\mathrm{3}} −{x}\:\mathrm{is}\:\mathrm{always}\:\mathrm{decreasing}. \\ $$$$\mathrm{Why}? \\ $$$$\mathrm{g}'\left({x}\right)\:=\:−\left(\mathrm{3}{x}^{\mathrm{2}} +\mathrm{1}\right)\:<\:\mathrm{0}\:\forall{x}\in\mathbb{R} \\ $$
Commented by zakirullah last updated on 16/Nov/21
very well sir G
$${very}\:{well}\:{sir}\:{G} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *