Question Number 28268 by abdo imad last updated on 22/Jan/18
$$\:{find}\:{in}\:{terms}\:{of}\:{n}\:{the}\:{value}\:{of} \\ $$$${A}_{{n}} =\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\frac{{n}}{\mathrm{2}}} \:{sin}\left({narctanx}\right){dx}\:.\:\:\left(\:{n}\in\:{N}\right). \\ $$
Commented by abdo imad last updated on 23/Jan/18
$${let}\:{introduce}\:{the}\:{polynome}\:{P}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{2}{i}}\:\left(\left(\mathrm{1}+{ix}\right)^{{n}} \:−\left(\mathrm{1}−{ix}\right)^{{n}} \right) \\ $$$${let}\:{write}\:{P}\left({x}\right)\:{in}\:{geometric}\:{form}\:\:.{we}\:{have}\: \\ $$$$\mid\mathrm{1}+{ix}\mid=\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }=\:\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:{and} \\ $$$$\mathrm{1}+{ix}\:=\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:\left(\:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:+{i}\frac{{x}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\right)=\:{r}\:{e}^{{i}\theta} \:\:\Rightarrow \\ $$$${r}=\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:\:\:{and}\:\:{tan}\theta={x}\Rightarrow\:\theta={artanx}\:\:{so} \\ $$$$\left(\mathrm{1}+{ix}\right)^{{n}} =\:\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\frac{{n}}{\mathrm{2}}} \:{e}^{{inarctanx}} \:\: \\ $$$$\left(\mathrm{1}−{ix}\right)^{{n}} =\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\frac{{n}}{\mathrm{2}}} \:{e}^{−{inartanx}} \:\:{and} \\ $$$${P}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}{i}}\left(\:\mathrm{2}{iIm}\left(\left(\mathrm{1}+{ix}\right)^{{n}} \right)\right)=\:\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\frac{{n}}{\mathrm{2}}} \:{sin}\left({narctanx}\right) \\ $$$$\Rightarrow\:{A}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} {P}\left({x}\right){dx}\:\:\:{but}\:{we}\:{have}\:{proved}\:{that} \\ $$$${P}\left({x}\right)=\:\sum_{{p}=\mathrm{0}} ^{\left[\frac{{n}−\mathrm{1}}{\mathrm{2}}\right]} \:\left(−\mathrm{1}\right)^{{p}} \:{C}_{{n}} ^{\mathrm{2}{p}+\mathrm{1}} \:{x}^{\mathrm{2}{p}+\mathrm{1}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {P}\left({x}\right){dx}\:=\:\:\sum_{{p}=\mathrm{0}} ^{\left[\frac{{n}−\mathrm{1}}{\mathrm{2}}\right]} \:\left(−\mathrm{1}\right)^{{p}} \:\:\frac{{C}_{{n}} ^{\mathrm{2}{p}+\mathrm{1}} }{\mathrm{2}{p}+\mathrm{2}}\:=\:{A}_{{n}} \:\:. \\ $$