Menu Close

Find-lim-x-0-5x-tan-5x-x-3-




Question Number 28341 by Cheyboy last updated on 24/Jan/18
Find  lim_(x→0)  ((5x−tan (5x))/x^3 )
Findlimx05xtan(5x)x3
Commented by Cheyboy last updated on 24/Jan/18
lim_(x→0)   ((5−sec^2 (5x).5)/(3x^2 ))  lim_(x→0)  ((0−50(sec(5x)).sec(5x).sec(5x)tan(5x))/(6x))  lim_(x→0)  ((−50sec^3 (5x)tan(5x))/(6x))  lim_(x→0)  ((−50(sec^5 (5x).5+5tan^2 (5x)sec^ (5x)))/6)  lim_(x→0)  ((−250(1))/6)=((−125)/3)  thank sir i was with pressure that  y i could nt solve it in class
limx05sec2(5x).53x2limx0050(sec(5x)).sec(5x).sec(5x)tan(5x)6xlimx050sec3(5x)tan(5x)6xlimx050(sec5(5x).5+5tan2(5x)sec(5x))6limx0250(1)6=1253thanksiriwaswithpressurethatyicouldntsolveitinclass
Commented by abdo imad last updated on 25/Jan/18
let use the ch 5x=t so  x→0⇔t→0  lim(...)=lim_(t→0)  ((t−tant  )/(t^3 /(125))) =125 lim_(t→0^   )  ((t−tant)/t^3 )  but lim_(t→0)   ((t−tant)/t^3 ) =lim_(t→0)  ((1−(1+tan^2 t))/(3t^2 ))  =lim_(t→0)  ((−2tant(1+tan^2 t))/(6t))=((−1)/3) lim_(t→0)  ((tant)/t)=((−1)/3)×1=((−1)/3)  ⇒lim_(x→0) ((5x −tan(5x))/x^3 )= ((−125)/3) .
letusethech5x=tsox0t0lim()=limt0ttantt3125=125limt0ttantt3butlimt0ttantt3=limt01(1+tan2t)3t2=limt02tant(1+tan2t)6t=13limt0tantt=13×1=13limx05xtan(5x)x3=1253.
Commented by abdo imad last updated on 25/Jan/18
i have used hospital theorem.
ihaveusedhospitaltheorem.
Commented by Cheyboy last updated on 25/Jan/18
Thank sir God bless you  =
ThanksirGodblessyou=
Answered by ajfour last updated on 24/Jan/18
=lim_(x→0)  ((5x−(5x+(((5x)^3 )/3)+((2(5x)^5 )/(15))+...))/x^3 )  =lim_(x→0) ((−((125)/3)+((2×125)/(15))(5x)^2 )/1)   =  − ((125)/3) .
=limx05x(5x+(5x)33+2(5x)515+)x3=limx01253+2×12515(5x)21=1253.
Commented by Cheyboy last updated on 24/Jan/18
ooh sir then i miss the ans  it was part of our test 2day   but i got ((−25)/2) ok thank for the answer
oohsirthenimisstheansitwaspartofourtest2daybutigot252okthankfortheanswer

Leave a Reply

Your email address will not be published. Required fields are marked *