Menu Close

Image-not-getting-attached-Please-see-the-link-below-




Question Number 28406 by Tinkutara last updated on 25/Jan/18
Image not getting attached. Please  see the link below.
$${Image}\:{not}\:{getting}\:{attached}.\:{Please} \\ $$$${see}\:{the}\:{link}\:{below}. \\ $$
Commented by Tinkutara last updated on 25/Jan/18
http://ibb.co/iaU0Jb Any method other than looking options?
Answered by Rasheed.Sindhi last updated on 26/Jan/18
     α,β are roots of x^2 −6p_1 x+2=0;       β,γ are roots of x^2 −6p_2 x+3=0;       γ ,αare roots of x^2 −6p_3 x+6=0;       p_1 ,p_2  &p_(3 ) are positive then:  Choose the correct answer  1.The values of α,β,γ  respectively are  (1) 2,3,1    (2) 2,1,3  (3) 1,2,3  (4)  −1,−2,−3  2.The values of p_1 ,p_2 ,p_3  respectively are  (1) (1/2),(2/3),(5/6)   (2) 1,2,5  (3) 6,1,4   (4) 2,(3/2),(6/5)  −.−.−.−.−.−  1.  αβ=2 ,βγ=3 , γα=6  Multiplying  α^2 β^2 γ^2 =36  αβγ=±6  ((αβγ)/(βγ))=((±6)/3)⇒α=±2  ((αβγ)/(αγ))=((±6)/6)⇒β=±1  ((αβγ)/(αβ))=((±6)/2)=±3  (α,β,γ)=(2,1,3)            Or  (α,β,γ)=(−2,−1,−3) (Not included in options)    (2)  2,1,3  −.−.−.−.−.−  2.     α+β=6p_1 ⇒p_1 =((2+1)/6)=(1/2)    β+γ=6p_2 ⇒p_2 =((1+3)/6)=(2/3)    γ+α=6p_2 ⇒p_3 =((3+2)/6)=(5/6)  (p_1 ,p_2 ,p_3 )=((1/2),(2/3),(5/6))  (1) (1/2),(2/3),(5/6)       ⋮
$$\:\:\:\:\:\alpha,\beta\:\mathrm{are}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{x}^{\mathrm{2}} −\mathrm{6p}_{\mathrm{1}} \mathrm{x}+\mathrm{2}=\mathrm{0}; \\ $$$$\:\:\:\:\:\beta,\gamma\:\mathrm{are}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{x}^{\mathrm{2}} −\mathrm{6p}_{\mathrm{2}} \mathrm{x}+\mathrm{3}=\mathrm{0}; \\ $$$$\:\:\:\:\:\gamma\:,\alpha\mathrm{are}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{x}^{\mathrm{2}} −\mathrm{6p}_{\mathrm{3}} \mathrm{x}+\mathrm{6}=\mathrm{0}; \\ $$$$\:\:\:\:\:\mathrm{p}_{\mathrm{1}} ,\mathrm{p}_{\mathrm{2}} \:\&\mathrm{p}_{\mathrm{3}\:} \mathrm{are}\:\mathrm{positive}\:\mathrm{then}: \\ $$$$\boldsymbol{\mathrm{Choose}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{correct}}\:\boldsymbol{\mathrm{answer}} \\ $$$$\mathrm{1}.\mathrm{The}\:\mathrm{values}\:\mathrm{of}\:\alpha,\beta,\gamma\:\:\mathrm{respectively}\:\mathrm{are} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{2},\mathrm{3},\mathrm{1}\:\:\:\:\left(\mathrm{2}\right)\:\mathrm{2},\mathrm{1},\mathrm{3}\:\:\left(\mathrm{3}\right)\:\mathrm{1},\mathrm{2},\mathrm{3}\:\:\left(\mathrm{4}\right)\:\:−\mathrm{1},−\mathrm{2},−\mathrm{3} \\ $$$$\mathrm{2}.\mathrm{The}\:\mathrm{values}\:\mathrm{of}\:\mathrm{p}_{\mathrm{1}} ,\mathrm{p}_{\mathrm{2}} ,\mathrm{p}_{\mathrm{3}} \:\mathrm{respectively}\:\mathrm{are} \\ $$$$\left(\mathrm{1}\right)\:\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{2}}{\mathrm{3}},\frac{\mathrm{5}}{\mathrm{6}}\:\:\:\left(\mathrm{2}\right)\:\mathrm{1},\mathrm{2},\mathrm{5}\:\:\left(\mathrm{3}\right)\:\mathrm{6},\mathrm{1},\mathrm{4}\:\:\:\left(\mathrm{4}\right)\:\mathrm{2},\frac{\mathrm{3}}{\mathrm{2}},\frac{\mathrm{6}}{\mathrm{5}} \\ $$$$−.−.−.−.−.− \\ $$$$\mathrm{1}. \\ $$$$\alpha\beta=\mathrm{2}\:,\beta\gamma=\mathrm{3}\:,\:\gamma\alpha=\mathrm{6} \\ $$$$\mathrm{Multiplying} \\ $$$$\alpha^{\mathrm{2}} \beta^{\mathrm{2}} \gamma^{\mathrm{2}} =\mathrm{36} \\ $$$$\alpha\beta\gamma=\pm\mathrm{6} \\ $$$$\frac{\alpha\beta\gamma}{\beta\gamma}=\frac{\pm\mathrm{6}}{\mathrm{3}}\Rightarrow\alpha=\pm\mathrm{2} \\ $$$$\frac{\alpha\beta\gamma}{\alpha\gamma}=\frac{\pm\mathrm{6}}{\mathrm{6}}\Rightarrow\beta=\pm\mathrm{1} \\ $$$$\frac{\alpha\beta\gamma}{\alpha\beta}=\frac{\pm\mathrm{6}}{\mathrm{2}}=\pm\mathrm{3} \\ $$$$\left(\alpha,\beta,\gamma\right)=\left(\mathrm{2},\mathrm{1},\mathrm{3}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{Or} \\ $$$$\left(\alpha,\beta,\gamma\right)=\left(−\mathrm{2},−\mathrm{1},−\mathrm{3}\right)\:\left(\mathrm{Not}\:\mathrm{included}\:\mathrm{in}\:\mathrm{options}\right) \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\:\:\mathrm{2},\mathrm{1},\mathrm{3} \\ $$$$−.−.−.−.−.− \\ $$$$\mathrm{2}.\: \\ $$$$\:\:\alpha+\beta=\mathrm{6p}_{\mathrm{1}} \Rightarrow\mathrm{p}_{\mathrm{1}} =\frac{\mathrm{2}+\mathrm{1}}{\mathrm{6}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\:\:\beta+\gamma=\mathrm{6p}_{\mathrm{2}} \Rightarrow\mathrm{p}_{\mathrm{2}} =\frac{\mathrm{1}+\mathrm{3}}{\mathrm{6}}=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\:\:\gamma+\alpha=\mathrm{6p}_{\mathrm{2}} \Rightarrow\mathrm{p}_{\mathrm{3}} =\frac{\mathrm{3}+\mathrm{2}}{\mathrm{6}}=\frac{\mathrm{5}}{\mathrm{6}} \\ $$$$\left(\mathrm{p}_{\mathrm{1}} ,\mathrm{p}_{\mathrm{2}} ,\mathrm{p}_{\mathrm{3}} \right)=\left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{2}}{\mathrm{3}},\frac{\mathrm{5}}{\mathrm{6}}\right) \\ $$$$\left(\mathrm{1}\right)\:\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{2}}{\mathrm{3}},\frac{\mathrm{5}}{\mathrm{6}} \\ $$$$\:\:\:\:\:\vdots \\ $$
Commented by Tinkutara last updated on 26/Jan/18
Thanks Sir! Rest I solved.

Leave a Reply

Your email address will not be published. Required fields are marked *