Menu Close

Question-68110




Question Number 68110 by TawaTawa last updated on 05/Sep/19
Commented by kaivan.ahmadi last updated on 07/Sep/19
((y/2))^2 =1−((x/3))^2 ⇒y=±2(√(1−((x/3))^2 ))  equation of BC:  m=tg30=((√3)/2)  y−0=((√3)/2)(x+3)⇒y=((√3)/2)x+((3(√3))/2)  equation of OD:  m=tg60=(√3)  y=(√3)x  we find point C  ((x/3))^2 +(((√3)/4)x+((3(√3))/4))^2 =1⇒(1/9)x^2 +(3/(16))x^2 +(9/8)x+((27)/(16))=1⇒  16x^2 +27x^2 +162x+243=144⇒43x^2 +162x+99=0  x_(1,2) =((−162±96)/(86))= { ((((−162+96)/(86))=((−66)/(86))=((−33)/(43)))),((((−162−96)/(86))=−3)) :}  so C(((−33)/(43)),((−33(√3))/(86))+((3(√3))/2))=(((−33)/(43)),((96(√3))/(86)))=(((−33)/(43)),((48(√3))/(43)))  so this diagram is not true.  and now we find point D:  ((x/3))^2 +(((√3)/2)x)^2 =1⇒(1/9)x^2 +(3/4)x^2 =1⇒13x^2 =36⇒  x^2 =((36)/(13))⇒x=±(√((36)/(13)))⇒D((√((36)/(13))),(√((108)/(13))))  so we have  S_(OBCD) =∫_(−3) ^((−33)/(43)) (((√3)/2)x+((3(√3))/2))dx+∫_((−33)/(43)) ^0 2(√(1−((x/3))^2 ))dx  +∫_0 ^(√((36)/(13)))  (2(√(1−((x/3))^2 ))−(√3)x)dx
(y2)2=1(x3)2y=±21(x3)2equationofBC:m=tg30=32y0=32(x+3)y=32x+332equationofOD:m=tg60=3y=3xwefindpointC(x3)2+(34x+334)2=119x2+316x2+98x+2716=116x2+27x2+162x+243=14443x2+162x+99=0x1,2=162±9686={162+9686=6686=33431629686=3soC(3343,33386+332)=(3343,96386)=(3343,48343)sothisdiagramisnottrue.andnowwefindpointD:(x3)2+(32x)2=119x2+34x2=113x2=36x2=3613x=±3613D(3613,10813)sowehaveSOBCD=33343(32x+332)dx+3343021(x3)2dx+03613(21(x3)23x)dx
Commented by TawaTawa last updated on 08/Sep/19
God bless you sir
Godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *