Menu Close

Find-the-direction-cosines-of-two-lines-which-are-connected-by-relation-l-m-n-0-mn-2nl-2lm-0-my-solution-l-m-n-mn-2n-m-n-2-n-m-n-0-2m-2-5mn-2n-2-0-2m-n-m-2n-0-m-2n-or-m-1-2-n-case-1-m-




Question Number 28504 by rish@bh last updated on 26/Jan/18
Find the direction cosines of two  lines which are connected by relation  l+m+n=0  mn−2nl−2lm=0    my solution  l=−(m+n)  mn+2n(m+n)+2(n+m)n=0  2m^2 +5mn+2n^2 =0  (2m+n)(m+2n)=0  m=−2n, or m=−(1/2)n  case 1: m=−2n  l=−(m+n)=−n  l^2 +m^2 +n^2 =1  6n^2 =1⇒n=±(1/( (√6)))  (l,m,n)=±(−(1/( (√6))),−(2/( (√6))),(1/( (√6))))  case 2:m=−(1/2)n  l=−(1/2)n  l^2 +m^2 +n^2 =1  (n^2 /4)+(n^2 /4)+n^2 =1⇒n=±(2/( (√6)))  (l,m,n)=±(−(1/( (√6))),−(1/( (√6))),(2/( (√6))))  so i get a total of 4 solution.  Books answer is 2 lines  ((1/( (√6))),(1/( (√6))),−(2/( (√6)))) and ((1/( (√6))),−(2/( (√6))),(1/( (√6))))  please help.
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{direction}\:\mathrm{cosines}\:\mathrm{of}\:\mathrm{two} \\ $$$$\mathrm{lines}\:\mathrm{which}\:\mathrm{are}\:\mathrm{connected}\:\mathrm{by}\:\mathrm{relation} \\ $$$${l}+{m}+{n}=\mathrm{0} \\ $$$${mn}−\mathrm{2}{nl}−\mathrm{2}{lm}=\mathrm{0} \\ $$$$ \\ $$$$\boldsymbol{\mathrm{my}}\:\boldsymbol{\mathrm{solution}} \\ $$$${l}=−\left({m}+{n}\right) \\ $$$${mn}+\mathrm{2}{n}\left({m}+{n}\right)+\mathrm{2}\left({n}+{m}\right){n}=\mathrm{0} \\ $$$$\mathrm{2}{m}^{\mathrm{2}} +\mathrm{5}{mn}+\mathrm{2}{n}^{\mathrm{2}} =\mathrm{0} \\ $$$$\left(\mathrm{2}{m}+{n}\right)\left({m}+\mathrm{2}{n}\right)=\mathrm{0} \\ $$$${m}=−\mathrm{2}{n},\:{or}\:{m}=−\left(\mathrm{1}/\mathrm{2}\right){n} \\ $$$${case}\:\mathrm{1}:\:{m}=−\mathrm{2}{n} \\ $$$${l}=−\left({m}+{n}\right)=−{n} \\ $$$${l}^{\mathrm{2}} +{m}^{\mathrm{2}} +{n}^{\mathrm{2}} =\mathrm{1} \\ $$$$\mathrm{6}{n}^{\mathrm{2}} =\mathrm{1}\Rightarrow{n}=\pm\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}} \\ $$$$\left({l},{m},{n}\right)=\pm\left(−\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}},−\frac{\mathrm{2}}{\:\sqrt{\mathrm{6}}},\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}}\right) \\ $$$${case}\:\mathrm{2}:{m}=−\left(\mathrm{1}/\mathrm{2}\right){n} \\ $$$${l}=−\frac{\mathrm{1}}{\mathrm{2}}{n} \\ $$$${l}^{\mathrm{2}} +{m}^{\mathrm{2}} +{n}^{\mathrm{2}} =\mathrm{1} \\ $$$$\frac{{n}^{\mathrm{2}} }{\mathrm{4}}+\frac{{n}^{\mathrm{2}} }{\mathrm{4}}+{n}^{\mathrm{2}} =\mathrm{1}\Rightarrow{n}=\pm\frac{\mathrm{2}}{\:\sqrt{\mathrm{6}}} \\ $$$$\left({l},{m},{n}\right)=\pm\left(−\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}},−\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}},\frac{\mathrm{2}}{\:\sqrt{\mathrm{6}}}\right) \\ $$$$\mathrm{so}\:\mathrm{i}\:\mathrm{get}\:\mathrm{a}\:\mathrm{total}\:\mathrm{of}\:\mathrm{4}\:\mathrm{solution}. \\ $$$$\mathrm{Books}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{2}\:\mathrm{lines} \\ $$$$\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}},\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}},−\frac{\mathrm{2}}{\:\sqrt{\mathrm{6}}}\right)\:\mathrm{and}\:\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}},−\frac{\mathrm{2}}{\:\sqrt{\mathrm{6}}},\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}}\right) \\ $$$$\mathrm{please}\:\mathrm{help}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *