Menu Close

a-b-c-d-3-a-c-b-d-4-a-d-b-c-




Question Number 28554 by naka3546 last updated on 27/Jan/18
(((a − b))/((c − d)))  =  3  (((a − c))/((b − d)))  =  4  (((a − d))/((b − c)))  =  ?
$$\frac{\left({a}\:−\:{b}\right)}{\left({c}\:−\:{d}\right)}\:\:=\:\:\mathrm{3} \\ $$$$\frac{\left({a}\:−\:{c}\right)}{\left({b}\:−\:{d}\right)}\:\:=\:\:\mathrm{4} \\ $$$$\frac{\left({a}\:−\:{d}\right)}{\left({b}\:−\:{c}\right)}\:\:=\:\:? \\ $$$$ \\ $$
Answered by ajfour last updated on 27/Jan/18
a−b=3(c−d)  ...(i)  a−c=4(b−d)     ...(ii)  (ii)−(i):  ⇒ b−c=3(b−c)+b−d  or  2(b−c)=d−b    ...(I)  (i)−3(ii):  −2a−b+3c=3c−3d−12b+12d  ⇒ −2(a−d)=−11(b−d) ...(II)  (II)÷(I):  ((a−d)/(b−c))=−11 .
$${a}−{b}=\mathrm{3}\left({c}−{d}\right)\:\:…\left({i}\right) \\ $$$${a}−{c}=\mathrm{4}\left({b}−{d}\right)\:\:\:\:\:…\left({ii}\right) \\ $$$$\left({ii}\right)−\left({i}\right): \\ $$$$\Rightarrow\:{b}−{c}=\mathrm{3}\left({b}−{c}\right)+{b}−{d} \\ $$$${or}\:\:\mathrm{2}\left({b}−{c}\right)={d}−{b}\:\:\:\:…\left({I}\right) \\ $$$$\left({i}\right)−\mathrm{3}\left({ii}\right): \\ $$$$−\mathrm{2}{a}−{b}+\mathrm{3}{c}=\mathrm{3}{c}−\mathrm{3}{d}−\mathrm{12}{b}+\mathrm{12}{d} \\ $$$$\Rightarrow\:−\mathrm{2}\left({a}−{d}\right)=−\mathrm{11}\left({b}−{d}\right)\:…\left({II}\right) \\ $$$$\left({II}\right)\boldsymbol{\div}\left({I}\right): \\ $$$$\frac{{a}−{d}}{{b}−{c}}=−\mathrm{11}\:. \\ $$
Answered by mrW2 last updated on 27/Jan/18
a−b=3c−3d   ...(i)  a−c=4b−4d  a−4b=c−4d   ...(ii)  (i)−(ii)  3b=2c+d  ⇒b=((2c+d)/3)  ⇒a=b+3c−3d=((2c+d+9c−9d)/3)=((11c−8d)/3)  a−d=((11c−8d−3d)/3)=((11(c−d))/3)  b−c=((2c+d−3c)/3)=−(((c−d))/3)  ⇒((a−d)/(b−c))=(((11(c−d))/3)/(−(((c−d))/3)))=−11
$${a}−{b}=\mathrm{3}{c}−\mathrm{3}{d}\:\:\:…\left({i}\right) \\ $$$${a}−{c}=\mathrm{4}{b}−\mathrm{4}{d} \\ $$$${a}−\mathrm{4}{b}={c}−\mathrm{4}{d}\:\:\:…\left({ii}\right) \\ $$$$\left({i}\right)−\left({ii}\right) \\ $$$$\mathrm{3}{b}=\mathrm{2}{c}+{d} \\ $$$$\Rightarrow{b}=\frac{\mathrm{2}{c}+{d}}{\mathrm{3}} \\ $$$$\Rightarrow{a}={b}+\mathrm{3}{c}−\mathrm{3}{d}=\frac{\mathrm{2}{c}+{d}+\mathrm{9}{c}−\mathrm{9}{d}}{\mathrm{3}}=\frac{\mathrm{11}{c}−\mathrm{8}{d}}{\mathrm{3}} \\ $$$${a}−{d}=\frac{\mathrm{11}{c}−\mathrm{8}{d}−\mathrm{3}{d}}{\mathrm{3}}=\frac{\mathrm{11}\left({c}−{d}\right)}{\mathrm{3}} \\ $$$${b}−{c}=\frac{\mathrm{2}{c}+{d}−\mathrm{3}{c}}{\mathrm{3}}=−\frac{\left({c}−{d}\right)}{\mathrm{3}} \\ $$$$\Rightarrow\frac{{a}−{d}}{{b}−{c}}=\frac{\frac{\mathrm{11}\left({c}−{d}\right)}{\mathrm{3}}}{−\frac{\left({c}−{d}\right)}{\mathrm{3}}}=−\mathrm{11} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *