Menu Close

1-prove-that-x-0-x-x-2-2-ln-1-x-x-2-find-lim-n-k-1-n-1-1-k-2-n-2-n-




Question Number 28890 by abdo imad last updated on 31/Jan/18
1) prove that ∀ x≥0   x −(x^2 /2)≤ln(1+x)≤x  2) find lim_(n→+∞)    Π_(k=1) ^n (1 + (1/(k^2 +n^2 )))^n .
$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\forall\:{x}\geqslant\mathrm{0}\:\:\:{x}\:−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\leqslant{ln}\left(\mathrm{1}+{x}\right)\leqslant{x} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:\:\:\prod_{{k}=\mathrm{1}} ^{{n}} \left(\mathrm{1}\:+\:\frac{\mathrm{1}}{{k}^{\mathrm{2}} +{n}^{\mathrm{2}} }\right)^{{n}} . \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *